Modelo predictivo de clasificación de pagos Fraudulentos para el área de prevención del fraude del Banco de Lima Metropolitana
Descripción del Articulo
La presente tesis muestra la aplicación de la Metodología Fundamental de Ciencia de Datos de IBM en conjunto con el marco de trabajo SCRUM para poder Analizar, modelar e implementar un modelo predictivo que permita asignar probabilidades a las transacciones bancarias y establecer cuáles son probable...
Autores: | , , |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2022 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/669754 |
Enlace del recurso: | http://hdl.handle.net/10757/669754 |
Nivel de acceso: | acceso abierto |
Materia: | Métricas de desempeño Algoritmos de clasificación Modelo predictivo Probabilidad de fraude Transacciones fraudulentas Credit card Predictive model https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | La presente tesis muestra la aplicación de la Metodología Fundamental de Ciencia de Datos de IBM en conjunto con el marco de trabajo SCRUM para poder Analizar, modelar e implementar un modelo predictivo que permita asignar probabilidades a las transacciones bancarias y establecer cuáles son probablemente fraudulentas. Con tal objeto, se identificará al mejor modelo luego de ejecutar la validación cruzada con Kfold igual a 10 y calcular los indicadores de Área bajo la curva de la Precisión y Exhaustividad (AUC-PR) y Lift ya que nos encontramos ante un problema de datos desbalanceados donde las transacciones fraudulentas representan el 0.13% y las no fraudulentas el 99.87%. Como resultado se obtiene el mejor modelo a Gradient Boosting Classifier del que se obtuvieron los resultados con un Área bajo la curva de la Precisión y Exhaustividad (AUC-PR) de 0.036 y Lift de 3.629%; estos indicadores permitirán a la oficina de Prevención de Fraudes del Banco establecer un margen de alerta y tomar acción cuando las transacciones sean identificadas como fraudulentas. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).