Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications
Descripción del Articulo
Research has shown the ineffectiveness of video surveillance operators in detecting crimes through security cameras, which is a challenge due to their physical limitations. On the other hand, it was shown that computer vision, although promising, faces difficulties in real-time crime detection due t...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676064 |
| Enlace del recurso: | http://hdl.handle.net/10757/676064 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial Vision Criminal Activities Custom Pistol Video-Game Dataset Human Limitations Machine Learning Real Time Detection Video Surveillance Systems YOLOV7 https://purl.org/pe-repo/ocde/ford#3.00.00 |
| id |
UUPC_b952be6655b89f1904bde9f72442d6ea |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676064 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications |
| title |
Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications |
| spellingShingle |
Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications Bazan, Diego Artificial Vision Criminal Activities Custom Pistol Video-Game Dataset Human Limitations Machine Learning Real Time Detection Video Surveillance Systems YOLOV7 https://purl.org/pe-repo/ocde/ford#3.00.00 |
| title_short |
Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications |
| title_full |
Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications |
| title_fullStr |
Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications |
| title_full_unstemmed |
Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications |
| title_sort |
Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applications |
| author |
Bazan, Diego |
| author_facet |
Bazan, Diego Casanova, Raul Ugarte, Willy |
| author_role |
author |
| author2 |
Casanova, Raul Ugarte, Willy |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Bazan, Diego Casanova, Raul Ugarte, Willy |
| dc.subject.es_PE.fl_str_mv |
Artificial Vision Criminal Activities Custom Pistol Video-Game Dataset Human Limitations Machine Learning Real Time Detection Video Surveillance Systems YOLOV7 |
| topic |
Artificial Vision Criminal Activities Custom Pistol Video-Game Dataset Human Limitations Machine Learning Real Time Detection Video Surveillance Systems YOLOV7 https://purl.org/pe-repo/ocde/ford#3.00.00 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.00.00 |
| description |
Research has shown the ineffectiveness of video surveillance operators in detecting crimes through security cameras, which is a challenge due to their physical limitations. On the other hand, it was shown that computer vision, although promising, faces difficulties in real-time crime detection due to the large amount of data needed to build reliable models. This study presents three key innovations: a gun dataset extracted from the Grand Theft Auto V game, a computer vision model trained on this data, and a video surveillance application that employs the model for automatic gun crime detection. The main challenge was to collect images representing various scenarios and angles to reinforce the computer vision model. The video editor of the Grand Theft Auto V game was used to obtain the necessary images. These images were used to train the model, which was implemented in a desktop application. The results were very promising, as the model demonstrated high accuracy in detecting gun crime in real time. The video surveillance application based on this model was able to automatically identify and alert about criminal situations on security cameras- |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-10-08T15:12:31Z |
| dc.date.available.none.fl_str_mv |
2024-10-08T15:12:31Z |
| dc.date.issued.fl_str_mv |
2024-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.doi.none.fl_str_mv |
10.5220/0012716500003690 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676064 |
| dc.identifier.eissn.none.fl_str_mv |
21844992 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Conference on Enterprise Information Systems, ICEIS - Proceedings |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85193971048 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85193971048 |
| identifier_str_mv |
10.5220/0012716500003690 21844992 International Conference on Enterprise Information Systems, ICEIS - Proceedings 2-s2.0-85193971048 SCOPUS_ID:85193971048 |
| url |
http://hdl.handle.net/10757/676064 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Science and Technology Publications, Lda. |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
International Conference on Enterprise Information Systems, ICEIS - Proceedings |
| dc.source.volume.none.fl_str_mv |
1 |
| dc.source.beginpage.none.fl_str_mv |
520 |
| dc.source.endpage.none.fl_str_mv |
529 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/5/127165.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/4/127165.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/1/127165.pdf |
| bitstream.checksum.fl_str_mv |
d3f4201c7e435bbe2e8bbeae2268dabd 6f69d03614f7eda58ee6616437732260 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 8c1fc96d776be9d8559c29b61d6a531d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Académico UPC |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1847968060491694080 |
| spelling |
01a820030c1573e99d98e07ea3ca4b4103afd6b0b77b32bc7a06cdc9d880709c300533fd7e68213307170565ef90452257a500Bazan, DiegoCasanova, RaulUgarte, Willy2024-10-08T15:12:31Z2024-10-08T15:12:31Z2024-01-0110.5220/0012716500003690http://hdl.handle.net/10757/67606421844992International Conference on Enterprise Information Systems, ICEIS - Proceedings2-s2.0-85193971048SCOPUS_ID:85193971048Research has shown the ineffectiveness of video surveillance operators in detecting crimes through security cameras, which is a challenge due to their physical limitations. On the other hand, it was shown that computer vision, although promising, faces difficulties in real-time crime detection due to the large amount of data needed to build reliable models. This study presents three key innovations: a gun dataset extracted from the Grand Theft Auto V game, a computer vision model trained on this data, and a video surveillance application that employs the model for automatic gun crime detection. The main challenge was to collect images representing various scenarios and angles to reinforce the computer vision model. The video editor of the Grand Theft Auto V game was used to obtain the necessary images. These images were used to train the model, which was implemented in a desktop application. The results were very promising, as the model demonstrated high accuracy in detecting gun crime in real time. The video surveillance application based on this model was able to automatically identify and alert about criminal situations on security cameras-application/pdfengScience and Technology Publications, Lda.info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Artificial VisionCriminal ActivitiesCustom Pistol Video-Game DatasetHuman LimitationsMachine LearningReal Time DetectionVideo Surveillance SystemsYOLOV7https://purl.org/pe-repo/ocde/ford#3.00.00Use of Custom Videogame Dataset and YOLO Model for Accurate Handgun Detection in Real-Time Video Security Applicationsinfo:eu-repo/semantics/articleInternational Conference on Enterprise Information Systems, ICEIS - Proceedings1520529reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-08T15:12:34ZTHUMBNAIL127165.pdf.jpg127165.pdf.jpgGenerated Thumbnailimage/jpeg94634https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/5/127165.pdf.jpgd3f4201c7e435bbe2e8bbeae2268dabdMD55falseTEXT127165.pdf.txt127165.pdf.txtExtracted texttext/plain36893https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/4/127165.pdf.txt6f69d03614f7eda58ee6616437732260MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL127165.pdf127165.pdfapplication/pdf7921406https://repositorioacademico.upc.edu.pe/bitstream/10757/676064/1/127165.pdf8c1fc96d776be9d8559c29b61d6a531dMD51true10757/676064oai:repositorioacademico.upc.edu.pe:10757/6760642025-10-30 07:28:19.361Repositorio Académico UPCupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.420596 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).