A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN

Descripción del Articulo

Nowadays, several methodologies and algorithms are being developed to improve image recognition and increase efficiency in species identification. In this context, this paper introduces a comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a co...

Descripción completa

Detalles Bibliográficos
Autores: Garcia, Sebastian, Leon, Adrian Ponce De, Vinces, Leonardo, Oliden, Jose
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/673070
Enlace del recurso:http://hdl.handle.net/10757/673070
Nivel de acceso:acceso embargado
Materia:Convolutional Neural Network Architecture (CNN)
Convolutional Neural Networks
Machine Learning
Model Training
Species Identification
id UUPC_b42fa351e37b6bbab289b88c550102a6
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/673070
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
title A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
spellingShingle A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
Garcia, Sebastian
Convolutional Neural Network Architecture (CNN)
Convolutional Neural Networks
Machine Learning
Model Training
Species Identification
title_short A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
title_full A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
title_fullStr A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
title_full_unstemmed A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
title_sort A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
author Garcia, Sebastian
author_facet Garcia, Sebastian
Leon, Adrian Ponce De
Vinces, Leonardo
Oliden, Jose
author_role author
author2 Leon, Adrian Ponce De
Vinces, Leonardo
Oliden, Jose
author2_role author
author
author
dc.contributor.author.fl_str_mv Garcia, Sebastian
Leon, Adrian Ponce De
Vinces, Leonardo
Oliden, Jose
dc.subject.es_PE.fl_str_mv Convolutional Neural Network Architecture (CNN)
Convolutional Neural Networks
Machine Learning
Model Training
Species Identification
topic Convolutional Neural Network Architecture (CNN)
Convolutional Neural Networks
Machine Learning
Model Training
Species Identification
description Nowadays, several methodologies and algorithms are being developed to improve image recognition and increase efficiency in species identification. In this context, this paper introduces a comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a convolutional neural network (CNN). In this study, a convolutional neural network architecture with 13 layers was evaluated using three different datasets. In the first set, the 'catsvsdogs' database from TensorFlow was used. In the second CNNN, the network was trained using a set of images that included only dog2 and cat2 species. Finally, in the third CNN the network was trained using a set of images that included only dog3 and cat3 species. The hypothesis put forward is that training a convolutional neural network with customized images of specific dogs and cats improves the accuracy in identifying these species compared to using the TensorFlow dataset. The performance of both models was evaluated using standard machine learning metrics. The results show that the accuracy of the convolutional neural network trained with personalized images increased significantly compared to previous results. Specifically, the recognition accuracy of specific dogs and cats improved considerably. In addition, the training time was reduced by approximately 94.8%, from 116 minutes to only 6 minutes. In conclusion, the use of personalized images in the training set can significantly improve the accuracy in identifying these species in a convolutional network, which can be especially useful in applications such as automatic pet feeders, where high accuracy is required when identifying the pet and providing the correct food.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-03-16T23:11:48Z
dc.date.available.none.fl_str_mv 2024-03-16T23:11:48Z
dc.date.issued.fl_str_mv 2023-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1109/CONIITI61170.2023.10324100
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/673070
dc.identifier.journal.es_PE.fl_str_mv 2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings
dc.identifier.eid.none.fl_str_mv 2-s2.0-85179553920
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85179553920
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.1109/CONIITI61170.2023.10324100
2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings
2-s2.0-85179553920
SCOPUS_ID:85179553920
0000 0001 2196 144X
url http://hdl.handle.net/10757/673070
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv 2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/673070/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837186888395390976
spelling 483dec1e3ceca7272bacadf6c79b73b0f961834fd445c023fa2494da9cb2d0eb30060e18754863e92f130edcf7adad97c8450048d1e2879eb682e4ca8936f6af1cc043500Garcia, SebastianLeon, Adrian Ponce DeVinces, LeonardoOliden, Jose2024-03-16T23:11:48Z2024-03-16T23:11:48Z2023-01-0110.1109/CONIITI61170.2023.10324100http://hdl.handle.net/10757/6730702023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings2-s2.0-85179553920SCOPUS_ID:851795539200000 0001 2196 144XNowadays, several methodologies and algorithms are being developed to improve image recognition and increase efficiency in species identification. In this context, this paper introduces a comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a convolutional neural network (CNN). In this study, a convolutional neural network architecture with 13 layers was evaluated using three different datasets. In the first set, the 'catsvsdogs' database from TensorFlow was used. In the second CNNN, the network was trained using a set of images that included only dog2 and cat2 species. Finally, in the third CNN the network was trained using a set of images that included only dog3 and cat3 species. The hypothesis put forward is that training a convolutional neural network with customized images of specific dogs and cats improves the accuracy in identifying these species compared to using the TensorFlow dataset. The performance of both models was evaluated using standard machine learning metrics. The results show that the accuracy of the convolutional neural network trained with personalized images increased significantly compared to previous results. Specifically, the recognition accuracy of specific dogs and cats improved considerably. In addition, the training time was reduced by approximately 94.8%, from 116 minutes to only 6 minutes. In conclusion, the use of personalized images in the training set can significantly improve the accuracy in identifying these species in a convolutional network, which can be especially useful in applications such as automatic pet feeders, where high accuracy is required when identifying the pet and providing the correct food.ODS 9: Industria, Innovación e InfraestructuraODS 15: Vida de Ecosistemas TerrestresODS 4: Educación de Calidadapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPC2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedingsreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCConvolutional Neural Network Architecture (CNN)Convolutional Neural NetworksMachine LearningModel TrainingSpecies IdentificationA comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNNinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/673070/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/673070oai:repositorioacademico.upc.edu.pe:10757/6730702024-07-20 10:32:18.819Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).