A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN
Descripción del Articulo
Nowadays, several methodologies and algorithms are being developed to improve image recognition and increase efficiency in species identification. In this context, this paper introduces a comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a co...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/673070 |
Enlace del recurso: | http://hdl.handle.net/10757/673070 |
Nivel de acceso: | acceso embargado |
Materia: | Convolutional Neural Network Architecture (CNN) Convolutional Neural Networks Machine Learning Model Training Species Identification |
id |
UUPC_b42fa351e37b6bbab289b88c550102a6 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/673070 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN |
title |
A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN |
spellingShingle |
A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN Garcia, Sebastian Convolutional Neural Network Architecture (CNN) Convolutional Neural Networks Machine Learning Model Training Species Identification |
title_short |
A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN |
title_full |
A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN |
title_fullStr |
A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN |
title_full_unstemmed |
A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN |
title_sort |
A comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNN |
author |
Garcia, Sebastian |
author_facet |
Garcia, Sebastian Leon, Adrian Ponce De Vinces, Leonardo Oliden, Jose |
author_role |
author |
author2 |
Leon, Adrian Ponce De Vinces, Leonardo Oliden, Jose |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Garcia, Sebastian Leon, Adrian Ponce De Vinces, Leonardo Oliden, Jose |
dc.subject.es_PE.fl_str_mv |
Convolutional Neural Network Architecture (CNN) Convolutional Neural Networks Machine Learning Model Training Species Identification |
topic |
Convolutional Neural Network Architecture (CNN) Convolutional Neural Networks Machine Learning Model Training Species Identification |
description |
Nowadays, several methodologies and algorithms are being developed to improve image recognition and increase efficiency in species identification. In this context, this paper introduces a comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a convolutional neural network (CNN). In this study, a convolutional neural network architecture with 13 layers was evaluated using three different datasets. In the first set, the 'catsvsdogs' database from TensorFlow was used. In the second CNNN, the network was trained using a set of images that included only dog2 and cat2 species. Finally, in the third CNN the network was trained using a set of images that included only dog3 and cat3 species. The hypothesis put forward is that training a convolutional neural network with customized images of specific dogs and cats improves the accuracy in identifying these species compared to using the TensorFlow dataset. The performance of both models was evaluated using standard machine learning metrics. The results show that the accuracy of the convolutional neural network trained with personalized images increased significantly compared to previous results. Specifically, the recognition accuracy of specific dogs and cats improved considerably. In addition, the training time was reduced by approximately 94.8%, from 116 minutes to only 6 minutes. In conclusion, the use of personalized images in the training set can significantly improve the accuracy in identifying these species in a convolutional network, which can be especially useful in applications such as automatic pet feeders, where high accuracy is required when identifying the pet and providing the correct food. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-03-16T23:11:48Z |
dc.date.available.none.fl_str_mv |
2024-03-16T23:11:48Z |
dc.date.issued.fl_str_mv |
2023-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1109/CONIITI61170.2023.10324100 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/673070 |
dc.identifier.journal.es_PE.fl_str_mv |
2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85179553920 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85179553920 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
10.1109/CONIITI61170.2023.10324100 2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings 2-s2.0-85179553920 SCOPUS_ID:85179553920 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/673070 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/673070/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186888395390976 |
spelling |
483dec1e3ceca7272bacadf6c79b73b0f961834fd445c023fa2494da9cb2d0eb30060e18754863e92f130edcf7adad97c8450048d1e2879eb682e4ca8936f6af1cc043500Garcia, SebastianLeon, Adrian Ponce DeVinces, LeonardoOliden, Jose2024-03-16T23:11:48Z2024-03-16T23:11:48Z2023-01-0110.1109/CONIITI61170.2023.10324100http://hdl.handle.net/10757/6730702023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedings2-s2.0-85179553920SCOPUS_ID:851795539200000 0001 2196 144XNowadays, several methodologies and algorithms are being developed to improve image recognition and increase efficiency in species identification. In this context, this paper introduces a comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a convolutional neural network (CNN). In this study, a convolutional neural network architecture with 13 layers was evaluated using three different datasets. In the first set, the 'catsvsdogs' database from TensorFlow was used. In the second CNNN, the network was trained using a set of images that included only dog2 and cat2 species. Finally, in the third CNN the network was trained using a set of images that included only dog3 and cat3 species. The hypothesis put forward is that training a convolutional neural network with customized images of specific dogs and cats improves the accuracy in identifying these species compared to using the TensorFlow dataset. The performance of both models was evaluated using standard machine learning metrics. The results show that the accuracy of the convolutional neural network trained with personalized images increased significantly compared to previous results. Specifically, the recognition accuracy of specific dogs and cats improved considerably. In addition, the training time was reduced by approximately 94.8%, from 116 minutes to only 6 minutes. In conclusion, the use of personalized images in the training set can significantly improve the accuracy in identifying these species in a convolutional network, which can be especially useful in applications such as automatic pet feeders, where high accuracy is required when identifying the pet and providing the correct food.ODS 9: Industria, Innovación e InfraestructuraODS 15: Vida de Ecosistemas TerrestresODS 4: Educación de Calidadapplication/htmlengInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPC2023 9th International Conference on Innovation and Trends in Engineering, CONIITI 2023 - Proceedingsreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCConvolutional Neural Network Architecture (CNN)Convolutional Neural NetworksMachine LearningModel TrainingSpecies IdentificationA comparative analysis of the efficiency between different datasets in the identification of dogs and cats in a CNNinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/673070/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/673070oai:repositorioacademico.upc.edu.pe:10757/6730702024-07-20 10:32:18.819Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).