Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
Descripción del Articulo
Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application cap...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676063 |
Enlace del recurso: | http://hdl.handle.net/10757/676063 |
Nivel de acceso: | acceso abierto |
Materia: | Computer Vision Convolutional Neural Network MobileNet Pothole Detection YOLO |
id |
UUPC_af55fc6d81d6321dc3e61bdfe58d8ef3 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676063 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks |
title |
Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks |
spellingShingle |
Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks Peralta-Ireijo, Sebastian Computer Vision Convolutional Neural Network MobileNet Pothole Detection YOLO |
title_short |
Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks |
title_full |
Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks |
title_fullStr |
Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks |
title_full_unstemmed |
Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks |
title_sort |
Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks |
author |
Peralta-Ireijo, Sebastian |
author_facet |
Peralta-Ireijo, Sebastian Chavez-Arias, Bill Ugarte, Willy |
author_role |
author |
author2 |
Chavez-Arias, Bill Ugarte, Willy |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Peralta-Ireijo, Sebastian Chavez-Arias, Bill Ugarte, Willy |
dc.subject.es_PE.fl_str_mv |
Computer Vision Convolutional Neural Network MobileNet Pothole Detection YOLO |
topic |
Computer Vision Convolutional Neural Network MobileNet Pothole Detection YOLO |
description |
Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application capable of real-time road damage detection and spatial mapping across a city. Three models are going to be trained and evaluated (Yolov5, Yolov8 and MobileNet v2) on a novel dataset which contains images from Lima, Peru. Meanwhile, the viability of crack detection through bounding box method will be put to the test, each model will be trained once with cracks annotations and without. The YOLOv5 model was the one with the best results, as it showed the best mAP50 across all of out experiments. It got 99.0% and 98.3% mAP50 with the dataset without crack and with crack annotations, correspondingly.. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-08T15:04:22Z |
dc.date.available.none.fl_str_mv |
2024-10-08T15:04:22Z |
dc.date.issued.fl_str_mv |
2024-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.5220/0012685600003690 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676063 |
dc.identifier.eissn.none.fl_str_mv |
21844992 |
dc.identifier.journal.es_PE.fl_str_mv |
International Conference on Enterprise Information Systems, ICEIS - Proceedings |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85193975222 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85193975222 |
identifier_str_mv |
10.5220/0012685600003690 21844992 International Conference on Enterprise Information Systems, ICEIS - Proceedings 2-s2.0-85193975222 SCOPUS_ID:85193975222 |
url |
http://hdl.handle.net/10757/676063 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
– Science and Technology Publications, Lda |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
International Conference on Enterprise Information Systems, ICEIS - Proceedings |
dc.source.volume.none.fl_str_mv |
1 |
dc.source.beginpage.none.fl_str_mv |
739 |
dc.source.endpage.none.fl_str_mv |
746 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/5/126856.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/4/126856.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/1/126856.pdf |
bitstream.checksum.fl_str_mv |
07922f882a61694a3d576e18401ae20e f777de904dae2a8bf7bfdb381acd3c16 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 cef4d6d5d59c45fd6a028f64ea879f2a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187181835190272 |
spelling |
a3ce189bdfdadc7d34317bbbf4641a2c300d5cc99585d867f88ac2dfeba88f6951a500533fd7e68213307170565ef90452257a500Peralta-Ireijo, SebastianChavez-Arias, BillUgarte, Willy2024-10-08T15:04:22Z2024-10-08T15:04:22Z2024-01-0110.5220/0012685600003690http://hdl.handle.net/10757/67606321844992International Conference on Enterprise Information Systems, ICEIS - Proceedings2-s2.0-85193975222SCOPUS_ID:85193975222Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application capable of real-time road damage detection and spatial mapping across a city. Three models are going to be trained and evaluated (Yolov5, Yolov8 and MobileNet v2) on a novel dataset which contains images from Lima, Peru. Meanwhile, the viability of crack detection through bounding box method will be put to the test, each model will be trained once with cracks annotations and without. The YOLOv5 model was the one with the best results, as it showed the best mAP50 across all of out experiments. It got 99.0% and 98.3% mAP50 with the dataset without crack and with crack annotations, correspondingly..application/pdfeng– Science and Technology Publications, Ldainfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Computer VisionConvolutional Neural NetworkMobileNetPothole DetectionYOLODeepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networksinfo:eu-repo/semantics/articleInternational Conference on Enterprise Information Systems, ICEIS - Proceedings1739746reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-08T15:04:23ZTHUMBNAIL126856.pdf.jpg126856.pdf.jpgGenerated Thumbnailimage/jpeg95708https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/5/126856.pdf.jpg07922f882a61694a3d576e18401ae20eMD55falseTEXT126856.pdf.txt126856.pdf.txtExtracted texttext/plain28697https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/4/126856.pdf.txtf777de904dae2a8bf7bfdb381acd3c16MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL126856.pdf126856.pdfapplication/pdf2840994https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/1/126856.pdfcef4d6d5d59c45fd6a028f64ea879f2aMD51true10757/676063oai:repositorioacademico.upc.edu.pe:10757/6760632024-10-09 07:12:18.784Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.949927 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).