Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks

Descripción del Articulo

Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application cap...

Descripción completa

Detalles Bibliográficos
Autores: Peralta-Ireijo, Sebastian, Chavez-Arias, Bill, Ugarte, Willy
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676063
Enlace del recurso:http://hdl.handle.net/10757/676063
Nivel de acceso:acceso abierto
Materia:Computer Vision
Convolutional Neural Network
MobileNet
Pothole Detection
YOLO
id UUPC_af55fc6d81d6321dc3e61bdfe58d8ef3
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676063
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
title Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
spellingShingle Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
Peralta-Ireijo, Sebastian
Computer Vision
Convolutional Neural Network
MobileNet
Pothole Detection
YOLO
title_short Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
title_full Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
title_fullStr Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
title_full_unstemmed Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
title_sort Deepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networks
author Peralta-Ireijo, Sebastian
author_facet Peralta-Ireijo, Sebastian
Chavez-Arias, Bill
Ugarte, Willy
author_role author
author2 Chavez-Arias, Bill
Ugarte, Willy
author2_role author
author
dc.contributor.author.fl_str_mv Peralta-Ireijo, Sebastian
Chavez-Arias, Bill
Ugarte, Willy
dc.subject.es_PE.fl_str_mv Computer Vision
Convolutional Neural Network
MobileNet
Pothole Detection
YOLO
topic Computer Vision
Convolutional Neural Network
MobileNet
Pothole Detection
YOLO
description Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application capable of real-time road damage detection and spatial mapping across a city. Three models are going to be trained and evaluated (Yolov5, Yolov8 and MobileNet v2) on a novel dataset which contains images from Lima, Peru. Meanwhile, the viability of crack detection through bounding box method will be put to the test, each model will be trained once with cracks annotations and without. The YOLOv5 model was the one with the best results, as it showed the best mAP50 across all of out experiments. It got 99.0% and 98.3% mAP50 with the dataset without crack and with crack annotations, correspondingly..
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-08T15:04:22Z
dc.date.available.none.fl_str_mv 2024-10-08T15:04:22Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.5220/0012685600003690
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676063
dc.identifier.eissn.none.fl_str_mv 21844992
dc.identifier.journal.es_PE.fl_str_mv International Conference on Enterprise Information Systems, ICEIS - Proceedings
dc.identifier.eid.none.fl_str_mv 2-s2.0-85193975222
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85193975222
identifier_str_mv 10.5220/0012685600003690
21844992
International Conference on Enterprise Information Systems, ICEIS - Proceedings
2-s2.0-85193975222
SCOPUS_ID:85193975222
url http://hdl.handle.net/10757/676063
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv – Science and Technology Publications, Lda
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv International Conference on Enterprise Information Systems, ICEIS - Proceedings
dc.source.volume.none.fl_str_mv 1
dc.source.beginpage.none.fl_str_mv 739
dc.source.endpage.none.fl_str_mv 746
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/5/126856.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/4/126856.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/1/126856.pdf
bitstream.checksum.fl_str_mv 07922f882a61694a3d576e18401ae20e
f777de904dae2a8bf7bfdb381acd3c16
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
cef4d6d5d59c45fd6a028f64ea879f2a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187181835190272
spelling a3ce189bdfdadc7d34317bbbf4641a2c300d5cc99585d867f88ac2dfeba88f6951a500533fd7e68213307170565ef90452257a500Peralta-Ireijo, SebastianChavez-Arias, BillUgarte, Willy2024-10-08T15:04:22Z2024-10-08T15:04:22Z2024-01-0110.5220/0012685600003690http://hdl.handle.net/10757/67606321844992International Conference on Enterprise Information Systems, ICEIS - Proceedings2-s2.0-85193975222SCOPUS_ID:85193975222Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application capable of real-time road damage detection and spatial mapping across a city. Three models are going to be trained and evaluated (Yolov5, Yolov8 and MobileNet v2) on a novel dataset which contains images from Lima, Peru. Meanwhile, the viability of crack detection through bounding box method will be put to the test, each model will be trained once with cracks annotations and without. The YOLOv5 model was the one with the best results, as it showed the best mAP50 across all of out experiments. It got 99.0% and 98.3% mAP50 with the dataset without crack and with crack annotations, correspondingly..application/pdfeng– Science and Technology Publications, Ldainfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Computer VisionConvolutional Neural NetworkMobileNetPothole DetectionYOLODeepbrokenhighways: Road Damage Recognition System Using Convolutional Neural Networksinfo:eu-repo/semantics/articleInternational Conference on Enterprise Information Systems, ICEIS - Proceedings1739746reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-08T15:04:23ZTHUMBNAIL126856.pdf.jpg126856.pdf.jpgGenerated Thumbnailimage/jpeg95708https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/5/126856.pdf.jpg07922f882a61694a3d576e18401ae20eMD55falseTEXT126856.pdf.txt126856.pdf.txtExtracted texttext/plain28697https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/4/126856.pdf.txtf777de904dae2a8bf7bfdb381acd3c16MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL126856.pdf126856.pdfapplication/pdf2840994https://repositorioacademico.upc.edu.pe/bitstream/10757/676063/1/126856.pdfcef4d6d5d59c45fd6a028f64ea879f2aMD51true10757/676063oai:repositorioacademico.upc.edu.pe:10757/6760632024-10-09 07:12:18.784Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).