Evaluation of the Mechanical Properties of Recycled Coarse Aggregate Concrete Against the Action of Fire

Descripción del Articulo

Growing concerns about sustainability and the search for greener alternatives in construction have led to a renewed interest in recycled concrete as a building material. Recycled concrete is produced using recycled aggregates, such as construction and demolition debris, instead of virgin aggregates,...

Descripción completa

Detalles Bibliográficos
Autores: Andre Jhoel, Lamas Chavez, Alvaro Fabrizio, Aliaga Guevara, Pablo Jhoel, Peña Torres
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676156
Enlace del recurso:http://hdl.handle.net/10757/676156
Nivel de acceso:acceso embargado
Materia:high temperatures
mechanical properties
recycled aggregate
Descripción
Sumario:Growing concerns about sustainability and the search for greener alternatives in construction have led to a renewed interest in recycled concrete as a building material. Recycled concrete is produced using recycled aggregates, such as construction and demolition debris, instead of virgin aggregates, which reduces the demand for natural resources and the accumulation of waste. However, the viability of recycled concrete in high-temperature applications, such as fires or exposure to extremely high temperatures, has come under critical scrutiny. In this study we are going to talk about the differences between conventional concrete and concrete with recycled aggregate after being exposed to high temperatures, we will focus on issues of resistance to compression, traction and modulus of elasticity. We were able to obtain in our tests that the greater the amount of recycled aggregate that we use in the concrete, the lower mechanical properties we obtain with respect to conventional concrete after being exposed to high temperatures, this is due to the adhered mortar that the recycled aggregate presents (in in our case 42% adhered mortar).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).