Sistema de predicción preliminar para reducir los errores en los diagnósticos de gastroenterología utilizando el algoritmo de Naive Bayes de Machine Learning en un hospital público de Lima

Descripción del Articulo

Los errores en los diagnósticos médicos de gastroenterología es un problema recurrente para los pacientes que buscan atención médica. La existencia de diversas enfermedades con síntomas similares aumenta la probabilidad de error en la interpretación de los médicos, quienes a veces no están completam...

Descripción completa

Detalles Bibliográficos
Autores: Trujillo Ramos, Nimel, Rojas Huaman, Eduardo Raul
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/673568
Enlace del recurso:http://doi.org/10.19083/tesis/673568
http://hdl.handle.net/10757/673568
Nivel de acceso:acceso abierto
Materia:Machine learning
Predicción de diagnóstico médico
Errores en los diagnósticos médicos
Gastroenterología
Síntomas médicos
Prediction of medical diagnosis
Errors in medical diagnoses
Gastroenterology
Medical symptoms
https://purl.org/pe-repo/ocde/ford#2.02.04
https://purl.org/pe-repo/ocde/ford#2.00.00
Descripción
Sumario:Los errores en los diagnósticos médicos de gastroenterología es un problema recurrente para los pacientes que buscan atención médica. La existencia de diversas enfermedades con síntomas similares aumenta la probabilidad de error en la interpretación de los médicos, quienes a veces no están completamente familiarizados con ciertas enfermedades o condiciones médicas. Asimismo, la falta de comunicación efectiva entre profesionales de la salud y pacientes son constantes, debido a la congestión en las unidades de atención médica, lo que agrava aún más esta situación. Estas deficiencias pueden tener graves consecuencias para la salud de los pacientes, incluyendo complicaciones de enfermedades no diagnosticadas, falta de prevención de enfermedades potencialmente mortales y tratamiento inadecuado. Por lo tanto, el objetivo de este proyecto es desarrollar un sistema de diagnóstico preliminar basado en datos fragmentados para ser entrenado con el algoritmo de Naive Bayes de Machine Learning por que tiene como propósito primordial asistir a los médicos especializados en la mejora de la precisión de sus diagnósticos. Para verificar la efectividad de la propuesta, se realizaron tres pruebas, que evaluaron médicos expertos en la especialidad de Gastroenterología. Además, se realizó una comparación entre el sistema propuesto y el historial de diagnósticos de pacientes, así como también se comparó con el sistema de diagnóstico preliminar Symptomate de Infermedica, tomando en consideración tres indicadores clave: errores de usuario, intentos fallidos de predicción e intentos satisfactorios de precisión. En el primer caso de prueba, se logró una precisión de hasta el 93%, lo que evidencia una alta confiabilidad del sistema en la provisión de diagnósticos preliminares, los cuales pueden ser de gran utilidad en la toma de decisiones por parte de los médicos especialistas en gastroenterología.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).