Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT

Descripción del Articulo

Indexed keywords Sustainable Development Goals SciVal Topics Abstract Hypertension has been a silent disease that has affected a large part of the world population; in 2022, 5.5 million cases were registered in Peru. Current treatments show an inadequate control of this disease. Therefore, a framewo...

Descripción completa

Detalles Bibliográficos
Autores: Rosales, Miguel, Huacacolque, Enzo, Castillo-Sequera, Jose Luis, Wong, Lenis
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676107
Enlace del recurso:http://hdl.handle.net/10757/676107
Nivel de acceso:acceso embargado
Materia:Hypertension, Framework, Blood pressure
Smartwatch, GPT, Blood pressure monitoring
id UUPC_8cc76a7f2e045e44665198f62d8b05c2
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676107
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT
title Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT
spellingShingle Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT
Rosales, Miguel
Hypertension, Framework, Blood pressure
Smartwatch, GPT, Blood pressure monitoring
title_short Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT
title_full Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT
title_fullStr Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT
title_full_unstemmed Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT
title_sort Framework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPT
author Rosales, Miguel
author_facet Rosales, Miguel
Huacacolque, Enzo
Castillo-Sequera, Jose Luis
Wong, Lenis
author_role author
author2 Huacacolque, Enzo
Castillo-Sequera, Jose Luis
Wong, Lenis
author2_role author
author
author
dc.contributor.author.fl_str_mv Rosales, Miguel
Huacacolque, Enzo
Castillo-Sequera, Jose Luis
Wong, Lenis
dc.subject.es_PE.fl_str_mv Hypertension, Framework, Blood pressure
Smartwatch, GPT, Blood pressure monitoring
topic Hypertension, Framework, Blood pressure
Smartwatch, GPT, Blood pressure monitoring
description Indexed keywords Sustainable Development Goals SciVal Topics Abstract Hypertension has been a silent disease that has affected a large part of the world population; in 2022, 5.5 million cases were registered in Peru. Current treatments show an inadequate control of this disease. Therefore, a framework is proposed to build an application for remote monitoring of hypertensive patients using technologies such as smartwatches and artificial intelligence of GPT, considering the diagnostic methodologies of hypertension used in the world, physiological variables and the implementation of GPT-4 as an assistant for the correct treatment of hypertension. The methodology was followed: selection of measurement techniques, selection of physiological variables, selection of the smartwatch model, implementation of GPT-4 and construction of a mobile application. The experimentation had two scenarios: (a) use of the traditional model and (b) using the proposed method. The results of the experimentation showed that the time to measure and record blood pressure and heart rate (TMR) was 44.44% faster with the app. The medical diagnosis time (TMD) was 80% more efficient than the traditional method. In addition, in the expert judgment evaluation, patients and cardiologists rated the solution with 4.2 and 4.1 points respectively, valuing it as 'agree' in use of the proposed solution.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-14T14:58:53Z
dc.date.available.none.fl_str_mv 2024-10-14T14:58:53Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 23057254
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676107
dc.identifier.journal.es_PE.fl_str_mv Conference of Open Innovation Association, FRUCT
dc.identifier.eid.none.fl_str_mv 2-s2.0-85193421632
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85193421632
identifier_str_mv 23057254
Conference of Open Innovation Association, FRUCT
2-s2.0-85193421632
SCOPUS_ID:85193421632
url http://hdl.handle.net/10757/676107
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Conference of Open Innovation Association, FRUCT
dc.source.beginpage.none.fl_str_mv 588
dc.source.endpage.none.fl_str_mv 595
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676107/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187183360868352
spelling 8b5d92e507f02cb8e554c79d77ae0f292de203befbb922d779755042b39953183006c42b1c46e8efde6b98c426490ae6582300f1524a3bbf68b7e2680e1ab2f7ba0bfd500Rosales, MiguelHuacacolque, EnzoCastillo-Sequera, Jose LuisWong, Lenis2024-10-14T14:58:53Z2024-10-14T14:58:53Z2024-01-0123057254http://hdl.handle.net/10757/676107Conference of Open Innovation Association, FRUCT2-s2.0-85193421632SCOPUS_ID:85193421632Indexed keywords Sustainable Development Goals SciVal Topics Abstract Hypertension has been a silent disease that has affected a large part of the world population; in 2022, 5.5 million cases were registered in Peru. Current treatments show an inadequate control of this disease. Therefore, a framework is proposed to build an application for remote monitoring of hypertensive patients using technologies such as smartwatches and artificial intelligence of GPT, considering the diagnostic methodologies of hypertension used in the world, physiological variables and the implementation of GPT-4 as an assistant for the correct treatment of hypertension. The methodology was followed: selection of measurement techniques, selection of physiological variables, selection of the smartwatch model, implementation of GPT-4 and construction of a mobile application. The experimentation had two scenarios: (a) use of the traditional model and (b) using the proposed method. The results of the experimentation showed that the time to measure and record blood pressure and heart rate (TMR) was 44.44% faster with the app. The medical diagnosis time (TMD) was 80% more efficient than the traditional method. In addition, in the expert judgment evaluation, patients and cardiologists rated the solution with 4.2 and 4.1 points respectively, valuing it as 'agree' in use of the proposed solution.application/htmlengIEEE Computer Societyinfo:eu-repo/semantics/embargoedAccessHypertension, Framework, Blood pressureSmartwatch, GPT, Blood pressure monitoringFramework for Monitoring Peruvian Patients with Hypertension using a Smartwatch and GPTinfo:eu-repo/semantics/articleConference of Open Innovation Association, FRUCT588595reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676107/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676107oai:repositorioacademico.upc.edu.pe:10757/6761072024-10-14 14:58:55.958Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).