Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
Descripción del Articulo
It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling mo...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/668170 |
Enlace del recurso: | http://hdl.handle.net/10757/668170 |
Nivel de acceso: | acceso embargado |
Materia: | Sweet taste perception T1R2-T1R3 heterodimeric complex Sweet taste receptor (STR) Sweeteners Molecular dynamics Independent gradient model (igm) Aspartame Noncovalent interactions Rational design of sweeteners Ligand-protein coupling |
id |
UUPC_80cc3978f5a29c617457b70a842e472b |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/668170 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis |
title |
Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis |
spellingShingle |
Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis Evangelista-Falcón, Wilfredo Sweet taste perception T1R2-T1R3 heterodimeric complex Sweet taste receptor (STR) Sweeteners Molecular dynamics Independent gradient model (igm) Aspartame Noncovalent interactions Rational design of sweeteners Ligand-protein coupling |
title_short |
Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis |
title_full |
Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis |
title_fullStr |
Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis |
title_full_unstemmed |
Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis |
title_sort |
Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis |
author |
Evangelista-Falcón, Wilfredo |
author_facet |
Evangelista-Falcón, Wilfredo Denhez, Clément Baena-Moncada, Angélica Ponce-Vargas, Miguel |
author_role |
author |
author2 |
Denhez, Clément Baena-Moncada, Angélica Ponce-Vargas, Miguel |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Evangelista-Falcón, Wilfredo Denhez, Clément Baena-Moncada, Angélica Ponce-Vargas, Miguel |
dc.subject.es_PE.fl_str_mv |
Sweet taste perception T1R2-T1R3 heterodimeric complex Sweet taste receptor (STR) Sweeteners Molecular dynamics Independent gradient model (igm) Aspartame Noncovalent interactions Rational design of sweeteners Ligand-protein coupling |
topic |
Sweet taste perception T1R2-T1R3 heterodimeric complex Sweet taste receptor (STR) Sweeteners Molecular dynamics Independent gradient model (igm) Aspartame Noncovalent interactions Rational design of sweeteners Ligand-protein coupling |
description |
It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling molecular dynamics and the independent gradient model (igm) approach we determine the main interacting signatures of the closed (active) conformation of the T1R2 Venus flytrap domain (VFD) toward aspartame. The igm methodology provides a rapid and reliable quantification of noncovalent interactions through a score (Δginter) based on the attenuation of the electronic density gradient when two molecular fragments approach each other. Herein, this approach is coupled to a 100 ns molecular dynamics simulation (MD-igm) to explore the ligand-cavity contacts on a per-residue basis as well as a series of key inter-residue interactions that stabilize the closed form of VFD. We also apply an atomic decomposition scheme of noncovalent interactions to quantify the contribution of the ligand segments to the noncovalent interplay. Finally, a series of structural modification on aspartame are conducted in order to obtain guidelines for the rational design of novel sweeteners. Given that innovative methodologies to reliably quantify the extent of ligand-protein coupling are strongly demanded, this approach combining a noncovalent analysis and MD simulations represents a valuable contribution, that can be easily applied to other relevant biomolecular systems. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-07T12:37:30Z |
dc.date.available.none.fl_str_mv |
2023-07-07T12:37:30Z |
dc.date.issued.fl_str_mv |
2023-02-09 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
15206106 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acs.jpcb.2c07180 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/668170 |
dc.identifier.eissn.none.fl_str_mv |
15205207 |
dc.identifier.journal.es_PE.fl_str_mv |
Journal of Physical Chemistry B |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85147199086 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85147199086 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
dc.identifier.ror.none.fl_str_mv |
047xrr705 |
identifier_str_mv |
15206106 10.1021/acs.jpcb.2c07180 15205207 Journal of Physical Chemistry B 2-s2.0-85147199086 SCOPUS_ID:85147199086 0000 0001 2196 144X 047xrr705 |
url |
http://hdl.handle.net/10757/668170 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c07180 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
American Chemical Society |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Journal of Physical Chemistry B |
dc.source.volume.none.fl_str_mv |
127 |
dc.source.issue.none.fl_str_mv |
5 |
dc.source.beginpage.none.fl_str_mv |
1110 |
dc.source.endpage.none.fl_str_mv |
1119 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/668170/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186783636357120 |
spelling |
006df3770321ef9f1b5b72cbb42d6da0300e4e206db72f797d7723b9a9c4502f83c3006673346b0a3d06a80f95807aac1de53c30070766febee8f8ec717024c7c369e67bd300Evangelista-Falcón, WilfredoDenhez, ClémentBaena-Moncada, AngélicaPonce-Vargas, Miguel2023-07-07T12:37:30Z2023-07-07T12:37:30Z2023-02-091520610610.1021/acs.jpcb.2c07180http://hdl.handle.net/10757/66817015205207Journal of Physical Chemistry B2-s2.0-85147199086SCOPUS_ID:851471990860000 0001 2196 144X047xrr705It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling molecular dynamics and the independent gradient model (igm) approach we determine the main interacting signatures of the closed (active) conformation of the T1R2 Venus flytrap domain (VFD) toward aspartame. The igm methodology provides a rapid and reliable quantification of noncovalent interactions through a score (Δginter) based on the attenuation of the electronic density gradient when two molecular fragments approach each other. Herein, this approach is coupled to a 100 ns molecular dynamics simulation (MD-igm) to explore the ligand-cavity contacts on a per-residue basis as well as a series of key inter-residue interactions that stabilize the closed form of VFD. We also apply an atomic decomposition scheme of noncovalent interactions to quantify the contribution of the ligand segments to the noncovalent interplay. Finally, a series of structural modification on aspartame are conducted in order to obtain guidelines for the rational design of novel sweeteners. Given that innovative methodologies to reliably quantify the extent of ligand-protein coupling are strongly demanded, this approach combining a noncovalent analysis and MD simulations represents a valuable contribution, that can be easily applied to other relevant biomolecular systems.Revisión por paresODS 3: Salud y BienestarODS 9: Industria, Innovación e InfraestructuraODS 12: Producción y Consumo Responsablesapplication/pdfengAmerican Chemical Societyhttps://pubs.acs.org/doi/10.1021/acs.jpcb.2c07180info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCJournal of Physical Chemistry B127511101119reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCSweet taste perceptionT1R2-T1R3 heterodimeric complexSweet taste receptor (STR)SweetenersMolecular dynamicsIndependent gradient model (igm)AspartameNoncovalent interactionsRational design of sweetenersLigand-protein couplingRevisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysisinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668170/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/668170oai:repositorioacademico.upc.edu.pe:10757/6681702024-07-19 00:40:06.134Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).