Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis

Descripción del Articulo

It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling mo...

Descripción completa

Detalles Bibliográficos
Autores: Evangelista-Falcón, Wilfredo, Denhez, Clément, Baena-Moncada, Angélica, Ponce-Vargas, Miguel
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668170
Enlace del recurso:http://hdl.handle.net/10757/668170
Nivel de acceso:acceso embargado
Materia:Sweet taste perception
T1R2-T1R3 heterodimeric complex
Sweet taste receptor (STR)
Sweeteners
Molecular dynamics
Independent gradient model (igm)
Aspartame
Noncovalent interactions
Rational design of sweeteners
Ligand-protein coupling
id UUPC_80cc3978f5a29c617457b70a842e472b
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/668170
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
title Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
spellingShingle Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
Evangelista-Falcón, Wilfredo
Sweet taste perception
T1R2-T1R3 heterodimeric complex
Sweet taste receptor (STR)
Sweeteners
Molecular dynamics
Independent gradient model (igm)
Aspartame
Noncovalent interactions
Rational design of sweeteners
Ligand-protein coupling
title_short Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
title_full Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
title_fullStr Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
title_full_unstemmed Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
title_sort Revisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysis
author Evangelista-Falcón, Wilfredo
author_facet Evangelista-Falcón, Wilfredo
Denhez, Clément
Baena-Moncada, Angélica
Ponce-Vargas, Miguel
author_role author
author2 Denhez, Clément
Baena-Moncada, Angélica
Ponce-Vargas, Miguel
author2_role author
author
author
dc.contributor.author.fl_str_mv Evangelista-Falcón, Wilfredo
Denhez, Clément
Baena-Moncada, Angélica
Ponce-Vargas, Miguel
dc.subject.es_PE.fl_str_mv Sweet taste perception
T1R2-T1R3 heterodimeric complex
Sweet taste receptor (STR)
Sweeteners
Molecular dynamics
Independent gradient model (igm)
Aspartame
Noncovalent interactions
Rational design of sweeteners
Ligand-protein coupling
topic Sweet taste perception
T1R2-T1R3 heterodimeric complex
Sweet taste receptor (STR)
Sweeteners
Molecular dynamics
Independent gradient model (igm)
Aspartame
Noncovalent interactions
Rational design of sweeteners
Ligand-protein coupling
description It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling molecular dynamics and the independent gradient model (igm) approach we determine the main interacting signatures of the closed (active) conformation of the T1R2 Venus flytrap domain (VFD) toward aspartame. The igm methodology provides a rapid and reliable quantification of noncovalent interactions through a score (Δginter) based on the attenuation of the electronic density gradient when two molecular fragments approach each other. Herein, this approach is coupled to a 100 ns molecular dynamics simulation (MD-igm) to explore the ligand-cavity contacts on a per-residue basis as well as a series of key inter-residue interactions that stabilize the closed form of VFD. We also apply an atomic decomposition scheme of noncovalent interactions to quantify the contribution of the ligand segments to the noncovalent interplay. Finally, a series of structural modification on aspartame are conducted in order to obtain guidelines for the rational design of novel sweeteners. Given that innovative methodologies to reliably quantify the extent of ligand-protein coupling are strongly demanded, this approach combining a noncovalent analysis and MD simulations represents a valuable contribution, that can be easily applied to other relevant biomolecular systems.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-07T12:37:30Z
dc.date.available.none.fl_str_mv 2023-07-07T12:37:30Z
dc.date.issued.fl_str_mv 2023-02-09
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 15206106
dc.identifier.doi.none.fl_str_mv 10.1021/acs.jpcb.2c07180
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/668170
dc.identifier.eissn.none.fl_str_mv 15205207
dc.identifier.journal.es_PE.fl_str_mv Journal of Physical Chemistry B
dc.identifier.eid.none.fl_str_mv 2-s2.0-85147199086
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85147199086
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
dc.identifier.ror.none.fl_str_mv 047xrr705
identifier_str_mv 15206106
10.1021/acs.jpcb.2c07180
15205207
Journal of Physical Chemistry B
2-s2.0-85147199086
SCOPUS_ID:85147199086
0000 0001 2196 144X
047xrr705
url http://hdl.handle.net/10757/668170
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://pubs.acs.org/doi/10.1021/acs.jpcb.2c07180
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv American Chemical Society
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Physical Chemistry B
dc.source.volume.none.fl_str_mv 127
dc.source.issue.none.fl_str_mv 5
dc.source.beginpage.none.fl_str_mv 1110
dc.source.endpage.none.fl_str_mv 1119
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/668170/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837186783636357120
spelling 006df3770321ef9f1b5b72cbb42d6da0300e4e206db72f797d7723b9a9c4502f83c3006673346b0a3d06a80f95807aac1de53c30070766febee8f8ec717024c7c369e67bd300Evangelista-Falcón, WilfredoDenhez, ClémentBaena-Moncada, AngélicaPonce-Vargas, Miguel2023-07-07T12:37:30Z2023-07-07T12:37:30Z2023-02-091520610610.1021/acs.jpcb.2c07180http://hdl.handle.net/10757/66817015205207Journal of Physical Chemistry B2-s2.0-85147199086SCOPUS_ID:851471990860000 0001 2196 144X047xrr705It is nowadays widely accepted that sweet taste perception is elicited by the activation of the heterodimeric complex T1R2-T1R3, customarily known as sweet taste receptor (STR). However, the interplay between STR and sweeteners has not yet been fully clarified. Here through a methodology coupling molecular dynamics and the independent gradient model (igm) approach we determine the main interacting signatures of the closed (active) conformation of the T1R2 Venus flytrap domain (VFD) toward aspartame. The igm methodology provides a rapid and reliable quantification of noncovalent interactions through a score (Δginter) based on the attenuation of the electronic density gradient when two molecular fragments approach each other. Herein, this approach is coupled to a 100 ns molecular dynamics simulation (MD-igm) to explore the ligand-cavity contacts on a per-residue basis as well as a series of key inter-residue interactions that stabilize the closed form of VFD. We also apply an atomic decomposition scheme of noncovalent interactions to quantify the contribution of the ligand segments to the noncovalent interplay. Finally, a series of structural modification on aspartame are conducted in order to obtain guidelines for the rational design of novel sweeteners. Given that innovative methodologies to reliably quantify the extent of ligand-protein coupling are strongly demanded, this approach combining a noncovalent analysis and MD simulations represents a valuable contribution, that can be easily applied to other relevant biomolecular systems.Revisión por paresODS 3: Salud y BienestarODS 9: Industria, Innovación e InfraestructuraODS 12: Producción y Consumo Responsablesapplication/pdfengAmerican Chemical Societyhttps://pubs.acs.org/doi/10.1021/acs.jpcb.2c07180info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCJournal of Physical Chemistry B127511101119reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCSweet taste perceptionT1R2-T1R3 heterodimeric complexSweet taste receptor (STR)SweetenersMolecular dynamicsIndependent gradient model (igm)AspartameNoncovalent interactionsRational design of sweetenersLigand-protein couplingRevisiting the Sweet Taste Receptor T1R2-T1R3 through Molecular Dynamics Simulations Coupled with a Noncovalent Interactions Analysisinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668170/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/668170oai:repositorioacademico.upc.edu.pe:10757/6681702024-07-19 00:40:06.134Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).