Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits

Descripción del Articulo

Smartphone addiction has emerged as a growing concern in society, particularly among teenagers, due to its potential negative impact on physical, emotional social well-being. The excessive use of smartphones has consistently shown associations with negative outcomes, highlighting a strong dependence...

Descripción completa

Detalles Bibliográficos
Autores: Osorio, Jacobo, Figueroa, Marko, Wong, Lenis
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/673716
Enlace del recurso:http://hdl.handle.net/10757/673716
Nivel de acceso:acceso abierto
Materia:Big Five Personality Traits
Machine Learning
Predictive Model
Random Forest
Smartphone Addiction
id UUPC_72c9c32cb1b9a2f6c14368c0c174772d
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/673716
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
title Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
spellingShingle Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
Osorio, Jacobo
Big Five Personality Traits
Machine Learning
Predictive Model
Random Forest
Smartphone Addiction
title_short Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
title_full Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
title_fullStr Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
title_full_unstemmed Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
title_sort Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
author Osorio, Jacobo
author_facet Osorio, Jacobo
Figueroa, Marko
Wong, Lenis
author_role author
author2 Figueroa, Marko
Wong, Lenis
author2_role author
author
dc.contributor.author.fl_str_mv Osorio, Jacobo
Figueroa, Marko
Wong, Lenis
dc.subject.es_PE.fl_str_mv Big Five Personality Traits
Machine Learning
Predictive Model
Random Forest
Smartphone Addiction
topic Big Five Personality Traits
Machine Learning
Predictive Model
Random Forest
Smartphone Addiction
description Smartphone addiction has emerged as a growing concern in society, particularly among teenagers, due to its potential negative impact on physical, emotional social well-being. The excessive use of smartphones has consistently shown associations with negative outcomes, highlighting a strong dependence on these devices, which often leads to detrimental effects on mental health, including heightened levels of anxiety, distress, stress depression. This psychological burden can further result in the neglect of daily activities as individuals become increasingly engrossed in seeking pleasure through their smartphones. The aim of this study is to develop a predictive model utilizing machine learning techniques to identify smartphone addiction based on the "Big Five Personality Traits (BFPT)". The model was developed by following five out of the six phases of the "Cross Industry Standard Process for Data Mining (CRISP-DM)" methodology, namely "business understanding," "data understanding," "data preparation," "modeling," and "evaluation." To construct the database, data was collected from a school using the Big Five Inventory (BFI) and the Smartphone Addiction Scale (SAS) questionnaires. Subsequently, four algorithms (DT, RF, XGB LG) were employed the correlation between the personality traits and addiction was examined. The analysis revealed a relationship between the traits of neuroticism and conscientiousness with smartphone addiction. The results demonstrated that the RF algorithm achieved an accuracy of 89.7%, a precision of 87.3% the highest AUC value on the ROC curve. These findings highlight the effectiveness of the proposed model in accurately predicting smartphone addiction among adolescents.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-09T15:48:26Z
dc.date.available.none.fl_str_mv 2024-06-09T15:48:26Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 15493636
dc.identifier.doi.none.fl_str_mv 10.3844/jcssp.2024.181.190
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/673716
dc.identifier.eissn.none.fl_str_mv 15526607
dc.identifier.journal.es_PE.fl_str_mv Journal of Computer Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85183550330
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85183550330
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 15493636
10.3844/jcssp.2024.181.190
15526607
Journal of Computer Science
2-s2.0-85183550330
SCOPUS_ID:85183550330
0000 0001 2196 144X
url http://hdl.handle.net/10757/673716
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Science Publications
dc.source.es_PE.fl_str_mv Repositorio Academico - UPC
Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Journal of Computer Science
dc.source.volume.none.fl_str_mv 20
dc.source.issue.none.fl_str_mv 2
dc.source.beginpage.none.fl_str_mv 181
dc.source.endpage.none.fl_str_mv 190
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/5/jcssp.2024.181.190.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/4/jcssp.2024.181.190.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/1/jcssp.2024.181.190.pdf
bitstream.checksum.fl_str_mv d6819acd6913e4dbdb9d4ea27f6d839d
9e25888590bc9cc7ad42e49c563bdc5f
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
d84c30ff5c9f3c848985d96652338bb2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187017914449920
spelling 67ecf28e127c5438b5282f7747249713db2b3e396cc0d216bf246917e5ef3842f1524a3bbf68b7e2680e1ab2f7ba0bfd500Osorio, JacoboFigueroa, MarkoWong, Lenis2024-06-09T15:48:26Z2024-06-09T15:48:26Z2024-01-011549363610.3844/jcssp.2024.181.190http://hdl.handle.net/10757/67371615526607Journal of Computer Science2-s2.0-85183550330SCOPUS_ID:851835503300000 0001 2196 144XSmartphone addiction has emerged as a growing concern in society, particularly among teenagers, due to its potential negative impact on physical, emotional social well-being. The excessive use of smartphones has consistently shown associations with negative outcomes, highlighting a strong dependence on these devices, which often leads to detrimental effects on mental health, including heightened levels of anxiety, distress, stress depression. This psychological burden can further result in the neglect of daily activities as individuals become increasingly engrossed in seeking pleasure through their smartphones. The aim of this study is to develop a predictive model utilizing machine learning techniques to identify smartphone addiction based on the "Big Five Personality Traits (BFPT)". The model was developed by following five out of the six phases of the "Cross Industry Standard Process for Data Mining (CRISP-DM)" methodology, namely "business understanding," "data understanding," "data preparation," "modeling," and "evaluation." To construct the database, data was collected from a school using the Big Five Inventory (BFI) and the Smartphone Addiction Scale (SAS) questionnaires. Subsequently, four algorithms (DT, RF, XGB LG) were employed the correlation between the personality traits and addiction was examined. The analysis revealed a relationship between the traits of neuroticism and conscientiousness with smartphone addiction. The results demonstrated that the RF algorithm achieved an accuracy of 89.7%, a precision of 87.3% the highest AUC value on the ROC curve. These findings highlight the effectiveness of the proposed model in accurately predicting smartphone addiction among adolescents.Revisión por paresapplication/pdfengScience Publicationsinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Journal of Computer Science202181190reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCBig Five Personality TraitsMachine LearningPredictive ModelRandom ForestSmartphone AddictionPredicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traitsinfo:eu-repo/semantics/article2024-06-09T15:48:28ZTHUMBNAILjcssp.2024.181.190.pdf.jpgjcssp.2024.181.190.pdf.jpgGenerated Thumbnailimage/jpeg97517https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/5/jcssp.2024.181.190.pdf.jpgd6819acd6913e4dbdb9d4ea27f6d839dMD55falseTEXTjcssp.2024.181.190.pdf.txtjcssp.2024.181.190.pdf.txtExtracted texttext/plain44644https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/4/jcssp.2024.181.190.pdf.txt9e25888590bc9cc7ad42e49c563bdc5fMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINALjcssp.2024.181.190.pdfjcssp.2024.181.190.pdfapplication/pdf941341https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/1/jcssp.2024.181.190.pdfd84c30ff5c9f3c848985d96652338bb2MD51true10757/673716oai:repositorioacademico.upc.edu.pe:10757/6737162024-06-10 05:06:33.502Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).