Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits
Descripción del Articulo
Smartphone addiction has emerged as a growing concern in society, particularly among teenagers, due to its potential negative impact on physical, emotional social well-being. The excessive use of smartphones has consistently shown associations with negative outcomes, highlighting a strong dependence...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/673716 |
Enlace del recurso: | http://hdl.handle.net/10757/673716 |
Nivel de acceso: | acceso abierto |
Materia: | Big Five Personality Traits Machine Learning Predictive Model Random Forest Smartphone Addiction |
id |
UUPC_72c9c32cb1b9a2f6c14368c0c174772d |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/673716 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits |
title |
Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits |
spellingShingle |
Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits Osorio, Jacobo Big Five Personality Traits Machine Learning Predictive Model Random Forest Smartphone Addiction |
title_short |
Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits |
title_full |
Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits |
title_fullStr |
Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits |
title_full_unstemmed |
Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits |
title_sort |
Predicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traits |
author |
Osorio, Jacobo |
author_facet |
Osorio, Jacobo Figueroa, Marko Wong, Lenis |
author_role |
author |
author2 |
Figueroa, Marko Wong, Lenis |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Osorio, Jacobo Figueroa, Marko Wong, Lenis |
dc.subject.es_PE.fl_str_mv |
Big Five Personality Traits Machine Learning Predictive Model Random Forest Smartphone Addiction |
topic |
Big Five Personality Traits Machine Learning Predictive Model Random Forest Smartphone Addiction |
description |
Smartphone addiction has emerged as a growing concern in society, particularly among teenagers, due to its potential negative impact on physical, emotional social well-being. The excessive use of smartphones has consistently shown associations with negative outcomes, highlighting a strong dependence on these devices, which often leads to detrimental effects on mental health, including heightened levels of anxiety, distress, stress depression. This psychological burden can further result in the neglect of daily activities as individuals become increasingly engrossed in seeking pleasure through their smartphones. The aim of this study is to develop a predictive model utilizing machine learning techniques to identify smartphone addiction based on the "Big Five Personality Traits (BFPT)". The model was developed by following five out of the six phases of the "Cross Industry Standard Process for Data Mining (CRISP-DM)" methodology, namely "business understanding," "data understanding," "data preparation," "modeling," and "evaluation." To construct the database, data was collected from a school using the Big Five Inventory (BFI) and the Smartphone Addiction Scale (SAS) questionnaires. Subsequently, four algorithms (DT, RF, XGB LG) were employed the correlation between the personality traits and addiction was examined. The analysis revealed a relationship between the traits of neuroticism and conscientiousness with smartphone addiction. The results demonstrated that the RF algorithm achieved an accuracy of 89.7%, a precision of 87.3% the highest AUC value on the ROC curve. These findings highlight the effectiveness of the proposed model in accurately predicting smartphone addiction among adolescents. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-09T15:48:26Z |
dc.date.available.none.fl_str_mv |
2024-06-09T15:48:26Z |
dc.date.issued.fl_str_mv |
2024-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
15493636 |
dc.identifier.doi.none.fl_str_mv |
10.3844/jcssp.2024.181.190 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/673716 |
dc.identifier.eissn.none.fl_str_mv |
15526607 |
dc.identifier.journal.es_PE.fl_str_mv |
Journal of Computer Science |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85183550330 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85183550330 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
15493636 10.3844/jcssp.2024.181.190 15526607 Journal of Computer Science 2-s2.0-85183550330 SCOPUS_ID:85183550330 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/673716 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Science Publications |
dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Journal of Computer Science |
dc.source.volume.none.fl_str_mv |
20 |
dc.source.issue.none.fl_str_mv |
2 |
dc.source.beginpage.none.fl_str_mv |
181 |
dc.source.endpage.none.fl_str_mv |
190 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/5/jcssp.2024.181.190.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/4/jcssp.2024.181.190.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/1/jcssp.2024.181.190.pdf |
bitstream.checksum.fl_str_mv |
d6819acd6913e4dbdb9d4ea27f6d839d 9e25888590bc9cc7ad42e49c563bdc5f 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 d84c30ff5c9f3c848985d96652338bb2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187017914449920 |
spelling |
67ecf28e127c5438b5282f7747249713db2b3e396cc0d216bf246917e5ef3842f1524a3bbf68b7e2680e1ab2f7ba0bfd500Osorio, JacoboFigueroa, MarkoWong, Lenis2024-06-09T15:48:26Z2024-06-09T15:48:26Z2024-01-011549363610.3844/jcssp.2024.181.190http://hdl.handle.net/10757/67371615526607Journal of Computer Science2-s2.0-85183550330SCOPUS_ID:851835503300000 0001 2196 144XSmartphone addiction has emerged as a growing concern in society, particularly among teenagers, due to its potential negative impact on physical, emotional social well-being. The excessive use of smartphones has consistently shown associations with negative outcomes, highlighting a strong dependence on these devices, which often leads to detrimental effects on mental health, including heightened levels of anxiety, distress, stress depression. This psychological burden can further result in the neglect of daily activities as individuals become increasingly engrossed in seeking pleasure through their smartphones. The aim of this study is to develop a predictive model utilizing machine learning techniques to identify smartphone addiction based on the "Big Five Personality Traits (BFPT)". The model was developed by following five out of the six phases of the "Cross Industry Standard Process for Data Mining (CRISP-DM)" methodology, namely "business understanding," "data understanding," "data preparation," "modeling," and "evaluation." To construct the database, data was collected from a school using the Big Five Inventory (BFI) and the Smartphone Addiction Scale (SAS) questionnaires. Subsequently, four algorithms (DT, RF, XGB LG) were employed the correlation between the personality traits and addiction was examined. The analysis revealed a relationship between the traits of neuroticism and conscientiousness with smartphone addiction. The results demonstrated that the RF algorithm achieved an accuracy of 89.7%, a precision of 87.3% the highest AUC value on the ROC curve. These findings highlight the effectiveness of the proposed model in accurately predicting smartphone addiction among adolescents.Revisión por paresapplication/pdfengScience Publicationsinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Journal of Computer Science202181190reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCBig Five Personality TraitsMachine LearningPredictive ModelRandom ForestSmartphone AddictionPredicting Smartphone Addiction in Teenagers: An Integrative Model Incorporating Machine Learning and Big Five Personality Traitsinfo:eu-repo/semantics/article2024-06-09T15:48:28ZTHUMBNAILjcssp.2024.181.190.pdf.jpgjcssp.2024.181.190.pdf.jpgGenerated Thumbnailimage/jpeg97517https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/5/jcssp.2024.181.190.pdf.jpgd6819acd6913e4dbdb9d4ea27f6d839dMD55falseTEXTjcssp.2024.181.190.pdf.txtjcssp.2024.181.190.pdf.txtExtracted texttext/plain44644https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/4/jcssp.2024.181.190.pdf.txt9e25888590bc9cc7ad42e49c563bdc5fMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINALjcssp.2024.181.190.pdfjcssp.2024.181.190.pdfapplication/pdf941341https://repositorioacademico.upc.edu.pe/bitstream/10757/673716/1/jcssp.2024.181.190.pdfd84c30ff5c9f3c848985d96652338bb2MD51true10757/673716oai:repositorioacademico.upc.edu.pe:10757/6737162024-06-10 05:06:33.502Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).