Machine Learning-Based Web Application for ADHD Detection in Children

Descripción del Articulo

Attention deficit hyperactivity disorder (ADHD) represents a medical condition characterized by the presence of inattention, hyperactivity, and impulsivity, which affects the academic development of students globally. In Peru, it affects a proportion of the pediatric population ranging from 2% to 12...

Descripción completa

Detalles Bibliográficos
Autores: Porras, Diego Oscar Alexander, Mejia, Gerson Antonio, Castañeda, Pedro Segundo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676002
Enlace del recurso:http://hdl.handle.net/10757/676002
Nivel de acceso:acceso embargado
Materia:ADHD detection
Child mental health
Computing methodologies
Machine learning
id UUPC_6dccf060454ace98690d1d8cf3590c53
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676002
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Machine Learning-Based Web Application for ADHD Detection in Children
title Machine Learning-Based Web Application for ADHD Detection in Children
spellingShingle Machine Learning-Based Web Application for ADHD Detection in Children
Porras, Diego Oscar Alexander
ADHD detection
Child mental health
Computing methodologies
Machine learning
title_short Machine Learning-Based Web Application for ADHD Detection in Children
title_full Machine Learning-Based Web Application for ADHD Detection in Children
title_fullStr Machine Learning-Based Web Application for ADHD Detection in Children
title_full_unstemmed Machine Learning-Based Web Application for ADHD Detection in Children
title_sort Machine Learning-Based Web Application for ADHD Detection in Children
author Porras, Diego Oscar Alexander
author_facet Porras, Diego Oscar Alexander
Mejia, Gerson Antonio
Castañeda, Pedro Segundo
author_role author
author2 Mejia, Gerson Antonio
Castañeda, Pedro Segundo
author2_role author
author
dc.contributor.author.fl_str_mv Porras, Diego Oscar Alexander
Mejia, Gerson Antonio
Castañeda, Pedro Segundo
dc.subject.es_PE.fl_str_mv ADHD detection
Child mental health
Computing methodologies
Machine learning
topic ADHD detection
Child mental health
Computing methodologies
Machine learning
description Attention deficit hyperactivity disorder (ADHD) represents a medical condition characterized by the presence of inattention, hyperactivity, and impulsivity, which affects the academic development of students globally. In Peru, it affects a proportion of the pediatric population ranging from 2% to 12%, with a prevalence of 12.1% in South Lima, particularly in public schools. This research presents an online application with machine learning to improve the detection of ADHD in elementary school children. Several machine learning algorithms were reviewed and Random Forest was selected as the best-performing model with an accuracy of 96.08%. The model uses 27 selected variables, optimizing data collection and training. The child answers the questionnaire within the app and psychologists can access the app to visualize the results, aiding in the early detection of ADHD. The experiment involved 189 participants, resulting in a high accuracy of the Random Forest model. This innovative solution can have a significant impact on the early identification of ADHD, benefiting children's health and educational process.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-05T09:43:04Z
dc.date.available.none.fl_str_mv 2024-10-05T09:43:04Z
dc.date.issued.fl_str_mv 2024-03-16
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1145/3655497.3655515
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676002
dc.identifier.journal.es_PE.fl_str_mv ACM International Conference Proceeding Series
dc.identifier.eid.none.fl_str_mv 2-s2.0-85201421901
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85201421901
identifier_str_mv 10.1145/3655497.3655515
ACM International Conference Proceeding Series
2-s2.0-85201421901
SCOPUS_ID:85201421901
url http://hdl.handle.net/10757/676002
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Association for Computing Machinery
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv ACM International Conference Proceeding Series
dc.source.beginpage.none.fl_str_mv 92
dc.source.endpage.none.fl_str_mv 98
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676002/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066052301062144
spelling 49171097ba05054ea0f0e65795c5d775300808310bcdb1e47c60aac55a9ef178ce7300fdbf9ecd72f9c7b5e0f9eb45e4e4086cPorras, Diego Oscar AlexanderMejia, Gerson AntonioCastañeda, Pedro Segundo2024-10-05T09:43:04Z2024-10-05T09:43:04Z2024-03-1610.1145/3655497.3655515http://hdl.handle.net/10757/676002ACM International Conference Proceeding Series2-s2.0-85201421901SCOPUS_ID:85201421901Attention deficit hyperactivity disorder (ADHD) represents a medical condition characterized by the presence of inattention, hyperactivity, and impulsivity, which affects the academic development of students globally. In Peru, it affects a proportion of the pediatric population ranging from 2% to 12%, with a prevalence of 12.1% in South Lima, particularly in public schools. This research presents an online application with machine learning to improve the detection of ADHD in elementary school children. Several machine learning algorithms were reviewed and Random Forest was selected as the best-performing model with an accuracy of 96.08%. The model uses 27 selected variables, optimizing data collection and training. The child answers the questionnaire within the app and psychologists can access the app to visualize the results, aiding in the early detection of ADHD. The experiment involved 189 participants, resulting in a high accuracy of the Random Forest model. This innovative solution can have a significant impact on the early identification of ADHD, benefiting children's health and educational process.application/htmlengAssociation for Computing Machineryinfo:eu-repo/semantics/embargoedAccessADHD detectionChild mental healthComputing methodologiesMachine learningMachine Learning-Based Web Application for ADHD Detection in Childreninfo:eu-repo/semantics/articleACM International Conference Proceeding Series9298reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676002/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676002oai:repositorioacademico.upc.edu.pe:10757/6760022024-10-05 09:43:07.072Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.936249
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).