Predictive model based on machine learning for raw material purchasing management in the retail sector.
Descripción del Articulo
Making raw material purchase forecasts for companies is very difficult and, if inadequately controlled, can affect the company's decision making and profitability. Currently, there are optimized systems or mathematical models to try to predict the demands and solve this problem. In this study,...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/675912 |
| Enlace del recurso: | http://hdl.handle.net/10757/675912 |
| Nivel de acceso: | acceso embargado |
| Materia: | Inventory management Model interpretation SMEs |
| id |
UUPC_6b3725dbe64c55521dc192420a0234fd |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/675912 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Predictive model based on machine learning for raw material purchasing management in the retail sector. |
| title |
Predictive model based on machine learning for raw material purchasing management in the retail sector. |
| spellingShingle |
Predictive model based on machine learning for raw material purchasing management in the retail sector. Antunez, Julio C. Inventory management Model interpretation SMEs |
| title_short |
Predictive model based on machine learning for raw material purchasing management in the retail sector. |
| title_full |
Predictive model based on machine learning for raw material purchasing management in the retail sector. |
| title_fullStr |
Predictive model based on machine learning for raw material purchasing management in the retail sector. |
| title_full_unstemmed |
Predictive model based on machine learning for raw material purchasing management in the retail sector. |
| title_sort |
Predictive model based on machine learning for raw material purchasing management in the retail sector. |
| author |
Antunez, Julio C. |
| author_facet |
Antunez, Julio C. Salazar, Johnny D. Castañeda, Pedro S. |
| author_role |
author |
| author2 |
Salazar, Johnny D. Castañeda, Pedro S. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Antunez, Julio C. Salazar, Johnny D. Castañeda, Pedro S. |
| dc.subject.es_PE.fl_str_mv |
Inventory management Model interpretation SMEs |
| topic |
Inventory management Model interpretation SMEs |
| description |
Making raw material purchase forecasts for companies is very difficult and, if inadequately controlled, can affect the company's decision making and profitability. Currently, there are optimized systems or mathematical models to try to predict the demands and solve this problem. In this study, a raw material purchase prediction model is proposed that uses the Elastic Net algorithm to analyze historical sales and inventory data. The model is used to improve prediction accuracy, allowing SMEs to optimize inventories, reduce costs and improve efficiency. Experimental results indicate that the proposed model obtains better results in the MAE, RMSE and R2 indicators. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-09-29T18:38:03Z |
| dc.date.available.none.fl_str_mv |
2024-09-29T18:38:03Z |
| dc.date.issued.fl_str_mv |
2024-06-28 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.doi.none.fl_str_mv |
10.1145/3677454.3677456 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/675912 |
| dc.identifier.journal.es_PE.fl_str_mv |
ACM International Conference Proceeding Series |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85202845935 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85202845935 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
10.1145/3677454.3677456 ACM International Conference Proceeding Series 2-s2.0-85202845935 SCOPUS_ID:85202845935 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/675912 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Association for Computing Machinery |
| dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
ACM International Conference Proceeding Series |
| dc.source.beginpage.none.fl_str_mv |
6 |
| dc.source.endpage.none.fl_str_mv |
11 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/675912/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846066051294429184 |
| spelling |
70812d48147d03cf013db6a81ef990a53008f23439d87cd8b0aa0f28f19d6b440d5300b7cfe215892bab35c654f4515f1faa16300Antunez, Julio C.Salazar, Johnny D.Castañeda, Pedro S.2024-09-29T18:38:03Z2024-09-29T18:38:03Z2024-06-2810.1145/3677454.3677456http://hdl.handle.net/10757/675912ACM International Conference Proceeding Series2-s2.0-85202845935SCOPUS_ID:852028459350000 0001 2196 144XMaking raw material purchase forecasts for companies is very difficult and, if inadequately controlled, can affect the company's decision making and profitability. Currently, there are optimized systems or mathematical models to try to predict the demands and solve this problem. In this study, a raw material purchase prediction model is proposed that uses the Elastic Net algorithm to analyze historical sales and inventory data. The model is used to improve prediction accuracy, allowing SMEs to optimize inventories, reduce costs and improve efficiency. Experimental results indicate that the proposed model obtains better results in the MAE, RMSE and R2 indicators.Revisión por paresapplication/htmlengAssociation for Computing Machineryinfo:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)ACM International Conference Proceeding Series611reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCInventory managementModel interpretationSMEsPredictive model based on machine learning for raw material purchasing management in the retail sector.info:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/675912/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/675912oai:repositorioacademico.upc.edu.pe:10757/6759122024-09-29 18:38:06.141Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.93619 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).