Valorización de activos inmobiliarios en una entidad financiera peruana: modelo predictivo XGBoost usando las características de los inmuebles y variables geográficas
Descripción del Articulo
Este estudio se centra en el desarrollo de modelos de regresión utilizando técnicas avanzadas de aprendizaje automático para predecir el valor comercial de inmuebles en el contexto financiero peruano. Se exploran diversos modelos, como Random Forest, Support Vector Regression (SVR), Redes Neuronales...
| Autores: | , , |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/686295 |
| Enlace del recurso: | http://hdl.handle.net/10757/686295 |
| Nivel de acceso: | acceso abierto |
| Materia: | Aprendizaje automático Modelos predictivos XGBoost Tasación de inmuebles Finanzas Variables geográficas Machine learning Predictive modelling Property valuation Finance Geographic variables https://purl.org/pe-repo/ocde/ford#2.02.03 https://purl.org/pe-repo/ocde/ford#2.02.00 |
| Sumario: | Este estudio se centra en el desarrollo de modelos de regresión utilizando técnicas avanzadas de aprendizaje automático para predecir el valor comercial de inmuebles en el contexto financiero peruano. Se exploran diversos modelos, como Random Forest, Support Vector Regression (SVR), Redes Neuronales, y XGBoost, siendo este último el que demostró mayor precisión al obtener un Error Porcentual Medio Absoluto de 17.89% y, por otra parte, una mayor flexibilidad al permitir controlar el comportamiento que debe tener cada variable independiente respecto a la variable objetivo. Además, se destaca la importancia de incluir variables como el área de construcción del bien inmueble y precio del metro cuadrado considerando su ubicación. Los resultados de este estudio proporcionan a las entidades financieras una herramienta robusta y eficiente para optimizar el proceso de tasación de inmuebles, reduciendo costos y tiempos asociados. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).