Predicción de demanda de GLP para el parque automotor peruano para el segundo semestre del año 2021
Descripción del Articulo
El presente trabajo muestra la situación actual de la demanda de Gas Liquado de Petroleo (GLP) en el mercado peruano con respecto al parque automotor durante los últimos 6 años. El objetivo general es predecir la demanda de GLP para el segundo semestre del año 2021, a través de las variables más rel...
Autores: | , , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2021 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/659110 |
Enlace del recurso: | http://hdl.handle.net/10757/659110 |
Nivel de acceso: | acceso abierto |
Materia: | Datos GLP Parque automotor Machine learning Probabilidad Modelo predictivo Regresión lineal múltiple Data Fleet Probability Predictive model Multiple linear regression http://purl.org/pe-repo/ocde/ford#5.00.00 https://purl.org/pe-repo/ocde/ford#5.02.04 |
Sumario: | El presente trabajo muestra la situación actual de la demanda de Gas Liquado de Petroleo (GLP) en el mercado peruano con respecto al parque automotor durante los últimos 6 años. El objetivo general es predecir la demanda de GLP para el segundo semestre del año 2021, a través de las variables más relevantes a fin de conocer si la producción local más la importación de este tipo de combustible (GLP) será la suficiente para cubrir la demanda del sector automotriz. La metodología utilizada por el equipo de ciencia de datos es Cross Industry Standard Process for Data Mining (CRISP-DM), la cual consiste en seguir una serie de diez etapas, en cada una de ellas se ira descubriendo y analizando las variables que serán relevantes para la elaboración del modelo deseado. El modelo seleccionado por el equipo de ciencia de datos es el modelo de aprendizaje predictivo ya que este agrupa varias técnicas estadísticas de modelización, lo cual incluye algoritmos de aprendizaje automático. Posteriormente las Herramientas que se utilizarán para un mejor Análisis y entendimiento de la problemática serán Power BI, KNime y Python. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).