Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model

Descripción del Articulo

Cyberbullying on social networks has emerged as a global problem with serious consequences on the mental health of victims, mainly children, and adolescents. Although there are AI-based solutions to address this issue, they face limitations such as a lack of multilingual datasets, detecting sarcasm,...

Descripción completa

Detalles Bibliográficos
Autores: Nina-Gutiérrez, Elizabeth Adriana, Pacheco-Alanya, Jesús Emerson, Morales-Arevalo, Juan Carlos
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676024
Enlace del recurso:http://hdl.handle.net/10757/676024
Nivel de acceso:acceso embargado
Materia:Artificial intelligence
Cyberbullying
GPT
Hate detection
Offensive language
Social media
id UUPC_110eb20a951ec4092776805280724493
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676024
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model
title Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model
spellingShingle Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model
Nina-Gutiérrez, Elizabeth Adriana
Artificial intelligence
Cyberbullying
GPT
Hate detection
Offensive language
Social media
title_short Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model
title_full Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model
title_fullStr Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model
title_full_unstemmed Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model
title_sort Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model
author Nina-Gutiérrez, Elizabeth Adriana
author_facet Nina-Gutiérrez, Elizabeth Adriana
Pacheco-Alanya, Jesús Emerson
Morales-Arevalo, Juan Carlos
author_role author
author2 Pacheco-Alanya, Jesús Emerson
Morales-Arevalo, Juan Carlos
author2_role author
author
dc.contributor.author.fl_str_mv Nina-Gutiérrez, Elizabeth Adriana
Pacheco-Alanya, Jesús Emerson
Morales-Arevalo, Juan Carlos
dc.subject.es_PE.fl_str_mv Artificial intelligence
Cyberbullying
GPT
Hate detection
Offensive language
Social media
topic Artificial intelligence
Cyberbullying
GPT
Hate detection
Offensive language
Social media
description Cyberbullying on social networks has emerged as a global problem with serious consequences on the mental health of victims, mainly children, and adolescents. Although there are AI-based solutions to address this issue, they face limitations such as a lack of multilingual datasets, detecting sarcasm, and detecting idioms. Research presents an innovative approach to effective cyberbullying detection using a fine-tuned GPT-3.5 model. Our main contribution is the creation of an extensive multi-label dataset of approximately 60,000 data in English, and Spanish, spanning diverse dialects. This data set was obtained by combining and processing multiple datasets from reliable sources. In addition, we developed a fine-tuned model based on GPT-3.5, capable of identifying hate speech, and offensive language in textual content on social networks. We conducted a thorough evaluation comparing our model to specialized solutions such as Perspective API, Moderation, Content Safety, Toxic Bert, and Gemini. The results demonstrate that our approach outperforms existing models in metrics such as precision, f1-score, and accuracy, making it the most suitable choice for effective cyberbullying detection. This research lays the groundwork for a future app where users can be alerted to harmful content online.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-06T11:17:57Z
dc.date.available.none.fl_str_mv 2024-10-06T11:17:57Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-66705-3_17
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676024
dc.identifier.eissn.none.fl_str_mv 18650937
dc.identifier.journal.es_PE.fl_str_mv Communications in Computer and Information Science
dc.identifier.eid.none.fl_str_mv 2-s2.0-85202606320
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85202606320
identifier_str_mv 18650929
10.1007/978-3-031-66705-3_17
18650937
Communications in Computer and Information Science
2-s2.0-85202606320
SCOPUS_ID:85202606320
url http://hdl.handle.net/10757/676024
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Communications in Computer and Information Science
dc.source.volume.none.fl_str_mv 2172 CCIS
dc.source.beginpage.none.fl_str_mv 252
dc.source.endpage.none.fl_str_mv 263
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676024/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846066052391239680
spelling 6042ae70dbad70a0e284106c8f04cd0b3000305ef1eee71f459742214f7f85e783030001670a91000b8b89687056f854c3cbe3Nina-Gutiérrez, Elizabeth AdrianaPacheco-Alanya, Jesús EmersonMorales-Arevalo, Juan Carlos2024-10-06T11:17:57Z2024-10-06T11:17:57Z2024-01-011865092910.1007/978-3-031-66705-3_17http://hdl.handle.net/10757/67602418650937Communications in Computer and Information Science2-s2.0-85202606320SCOPUS_ID:85202606320Cyberbullying on social networks has emerged as a global problem with serious consequences on the mental health of victims, mainly children, and adolescents. Although there are AI-based solutions to address this issue, they face limitations such as a lack of multilingual datasets, detecting sarcasm, and detecting idioms. Research presents an innovative approach to effective cyberbullying detection using a fine-tuned GPT-3.5 model. Our main contribution is the creation of an extensive multi-label dataset of approximately 60,000 data in English, and Spanish, spanning diverse dialects. This data set was obtained by combining and processing multiple datasets from reliable sources. In addition, we developed a fine-tuned model based on GPT-3.5, capable of identifying hate speech, and offensive language in textual content on social networks. We conducted a thorough evaluation comparing our model to specialized solutions such as Perspective API, Moderation, Content Safety, Toxic Bert, and Gemini. The results demonstrate that our approach outperforms existing models in metrics such as precision, f1-score, and accuracy, making it the most suitable choice for effective cyberbullying detection. This research lays the groundwork for a future app where users can be alerted to harmful content online.application/htmlengSpringer Science and Business Media Deutschland GmbHinfo:eu-repo/semantics/embargoedAccessArtificial intelligenceCyberbullyingGPTHate detectionOffensive languageSocial mediaMultilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Modelinfo:eu-repo/semantics/articleCommunications in Computer and Information Science2172 CCIS252263reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676024/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676024oai:repositorioacademico.upc.edu.pe:10757/6760242024-10-06 11:17:59.346Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).