A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics

Descripción del Articulo

The health sector around the world faces the continuous challenge of improving the services provided to patients. Therefore, digital transformation in health services plays a key role in integrating new technologies such as artificial intelligence. However, the health system in Peru has not yet take...

Descripción completa

Detalles Bibliográficos
Autores: Mita, Vielka, Castillo, Liliana, Castillo-Sequera, José Luis, Wong, Lenis
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/669467
Enlace del recurso:http://hdl.handle.net/10757/669467
Nivel de acceso:acceso abierto
Materia:chronic kidney disease
decision tree (DT)
learning health-care system
machine learning
random forest (RF)
id UUPC_0ebf3809b8369a222de32a47e69867ba
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/669467
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
title A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
spellingShingle A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
Mita, Vielka
chronic kidney disease
decision tree (DT)
learning health-care system
machine learning
random forest (RF)
title_short A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
title_full A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
title_fullStr A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
title_full_unstemmed A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
title_sort A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
author Mita, Vielka
author_facet Mita, Vielka
Castillo, Liliana
Castillo-Sequera, José Luis
Wong, Lenis
author_role author
author2 Castillo, Liliana
Castillo-Sequera, José Luis
Wong, Lenis
author2_role author
author
author
dc.contributor.author.fl_str_mv Mita, Vielka
Castillo, Liliana
Castillo-Sequera, José Luis
Wong, Lenis
dc.subject.es_PE.fl_str_mv chronic kidney disease
decision tree (DT)
learning health-care system
machine learning
random forest (RF)
topic chronic kidney disease
decision tree (DT)
learning health-care system
machine learning
random forest (RF)
description The health sector around the world faces the continuous challenge of improving the services provided to patients. Therefore, digital transformation in health services plays a key role in integrating new technologies such as artificial intelligence. However, the health system in Peru has not yet taken the big step towards digitising its services, currently ranking 71st according to the World Health Organisation (WHO). This article proposes a learning health system for the management and monitoring of private health services in Peru based on the three key components of intelligent health care: (1) a health data platform (HDP); (2) intelligent technologies (IT); and (3) an intelligent health care suite (HIS). The solution consists of four layers: (1) data source, (2) data warehousing, (3) data analytics, and (4) visualization. In layer 1, all data sources are selected to create a database. The proposed learning health system is built, and the data storage is executed through the extract, transform and load (ETL) process in layer 2. In layer 3, the Kaggle dataset and the decision tree (DT) and random forest (RF) algorithms are used to predict the diagnosis of disease, resulting in the RF algorithm having the best performance. Finally, in layer 4, the intelligent health-care suite dashboards and interfaces are designed. The proposed system was applied in a clinic focused on preventing chronic kidney disease. A total of 100 patients and six kidney health experts participated. The results proved that the diagnosis of chronic kidney disease by the learning health system had a low error rate in positive diagnoses (err = 1.12%). Additionally, it was demonstrated that experts were “satisfied” with the dashboards and interfaces of the intelligent health-care suite as well as the quality of the learning health system.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-27T03:12:58Z
dc.date.available.none.fl_str_mv 2023-11-27T03:12:58Z
dc.date.issued.fl_str_mv 2023-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.3991/ijoe.v19i14.41949
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/669467
dc.identifier.eissn.none.fl_str_mv 26268493
dc.identifier.journal.es_PE.fl_str_mv International journal of online and biomedical engineering
dc.identifier.eid.none.fl_str_mv 2-s2.0-85174001873
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85174001873
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 10.3991/ijoe.v19i14.41949
26268493
International journal of online and biomedical engineering
2-s2.0-85174001873
SCOPUS_ID:85174001873
0000 0001 2196 144X
url http://hdl.handle.net/10757/669467
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Association of Online Engineering
dc.source.es_PE.fl_str_mv Repositorio Academico - UPC
Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv International journal of online and biomedical engineering
dc.source.volume.none.fl_str_mv 19
dc.source.issue.none.fl_str_mv 14
dc.source.beginpage.none.fl_str_mv 76
dc.source.endpage.none.fl_str_mv 97
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/5/10.3991ijoe.v19i14.41949.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/4/10.3991ijoe.v19i14.41949.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/1/10.3991ijoe.v19i14.41949.pdf
bitstream.checksum.fl_str_mv d8bc041fbf5597cc0387a6c6b2dda54a
dcc485375b90cfcca7e4a07897a81d3d
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
57ffef85de41636b2d963c0208f69ee0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065952422100992
spelling 355d94e8d0501c09288cdec1cc52139a300d2759c8716e25fc908f2ca407b94aad856bb0e4a7e8f70d8a3f57263b9b232b8300f1524a3bbf68b7e2680e1ab2f7ba0bfd500Mita, VielkaCastillo, LilianaCastillo-Sequera, José LuisWong, Lenis2023-11-27T03:12:58Z2023-11-27T03:12:58Z2023-01-0110.3991/ijoe.v19i14.41949http://hdl.handle.net/10757/66946726268493International journal of online and biomedical engineering2-s2.0-85174001873SCOPUS_ID:851740018730000 0001 2196 144XThe health sector around the world faces the continuous challenge of improving the services provided to patients. Therefore, digital transformation in health services plays a key role in integrating new technologies such as artificial intelligence. However, the health system in Peru has not yet taken the big step towards digitising its services, currently ranking 71st according to the World Health Organisation (WHO). This article proposes a learning health system for the management and monitoring of private health services in Peru based on the three key components of intelligent health care: (1) a health data platform (HDP); (2) intelligent technologies (IT); and (3) an intelligent health care suite (HIS). The solution consists of four layers: (1) data source, (2) data warehousing, (3) data analytics, and (4) visualization. In layer 1, all data sources are selected to create a database. The proposed learning health system is built, and the data storage is executed through the extract, transform and load (ETL) process in layer 2. In layer 3, the Kaggle dataset and the decision tree (DT) and random forest (RF) algorithms are used to predict the diagnosis of disease, resulting in the RF algorithm having the best performance. Finally, in layer 4, the intelligent health-care suite dashboards and interfaces are designed. The proposed system was applied in a clinic focused on preventing chronic kidney disease. A total of 100 patients and six kidney health experts participated. The results proved that the diagnosis of chronic kidney disease by the learning health system had a low error rate in positive diagnoses (err = 1.12%). Additionally, it was demonstrated that experts were “satisfied” with the dashboards and interfaces of the intelligent health-care suite as well as the quality of the learning health system.Revisión por paresODS 3: Salud y BienestarODS 9: Industria, Innovación e InfraestructuraODS 4: Educación de Calidadapplication/pdfengInternational Association of Online Engineeringinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)International journal of online and biomedical engineering19147697reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCchronic kidney diseasedecision tree (DT)learning health-care systemmachine learningrandom forest (RF)A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analyticsinfo:eu-repo/semantics/article2023-11-27T03:12:59ZTHUMBNAIL10.3991ijoe.v19i14.41949.pdf.jpg10.3991ijoe.v19i14.41949.pdf.jpgGenerated Thumbnailimage/jpeg109665https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/5/10.3991ijoe.v19i14.41949.pdf.jpgd8bc041fbf5597cc0387a6c6b2dda54aMD55falseTEXT10.3991ijoe.v19i14.41949.pdf.txt10.3991ijoe.v19i14.41949.pdf.txtExtracted texttext/plain53100https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/4/10.3991ijoe.v19i14.41949.pdf.txtdcc485375b90cfcca7e4a07897a81d3dMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL10.3991ijoe.v19i14.41949.pdf10.3991ijoe.v19i14.41949.pdfapplication/pdf2400823https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/1/10.3991ijoe.v19i14.41949.pdf57ffef85de41636b2d963c0208f69ee0MD51true10757/669467oai:repositorioacademico.upc.edu.pe:10757/6694672024-07-20 04:29:49.584Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.924177
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).