A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics
Descripción del Articulo
The health sector around the world faces the continuous challenge of improving the services provided to patients. Therefore, digital transformation in health services plays a key role in integrating new technologies such as artificial intelligence. However, the health system in Peru has not yet take...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/669467 |
| Enlace del recurso: | http://hdl.handle.net/10757/669467 |
| Nivel de acceso: | acceso abierto |
| Materia: | chronic kidney disease decision tree (DT) learning health-care system machine learning random forest (RF) |
| id |
UUPC_0ebf3809b8369a222de32a47e69867ba |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/669467 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics |
| title |
A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics |
| spellingShingle |
A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics Mita, Vielka chronic kidney disease decision tree (DT) learning health-care system machine learning random forest (RF) |
| title_short |
A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics |
| title_full |
A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics |
| title_fullStr |
A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics |
| title_full_unstemmed |
A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics |
| title_sort |
A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analytics |
| author |
Mita, Vielka |
| author_facet |
Mita, Vielka Castillo, Liliana Castillo-Sequera, José Luis Wong, Lenis |
| author_role |
author |
| author2 |
Castillo, Liliana Castillo-Sequera, José Luis Wong, Lenis |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Mita, Vielka Castillo, Liliana Castillo-Sequera, José Luis Wong, Lenis |
| dc.subject.es_PE.fl_str_mv |
chronic kidney disease decision tree (DT) learning health-care system machine learning random forest (RF) |
| topic |
chronic kidney disease decision tree (DT) learning health-care system machine learning random forest (RF) |
| description |
The health sector around the world faces the continuous challenge of improving the services provided to patients. Therefore, digital transformation in health services plays a key role in integrating new technologies such as artificial intelligence. However, the health system in Peru has not yet taken the big step towards digitising its services, currently ranking 71st according to the World Health Organisation (WHO). This article proposes a learning health system for the management and monitoring of private health services in Peru based on the three key components of intelligent health care: (1) a health data platform (HDP); (2) intelligent technologies (IT); and (3) an intelligent health care suite (HIS). The solution consists of four layers: (1) data source, (2) data warehousing, (3) data analytics, and (4) visualization. In layer 1, all data sources are selected to create a database. The proposed learning health system is built, and the data storage is executed through the extract, transform and load (ETL) process in layer 2. In layer 3, the Kaggle dataset and the decision tree (DT) and random forest (RF) algorithms are used to predict the diagnosis of disease, resulting in the RF algorithm having the best performance. Finally, in layer 4, the intelligent health-care suite dashboards and interfaces are designed. The proposed system was applied in a clinic focused on preventing chronic kidney disease. A total of 100 patients and six kidney health experts participated. The results proved that the diagnosis of chronic kidney disease by the learning health system had a low error rate in positive diagnoses (err = 1.12%). Additionally, it was demonstrated that experts were “satisfied” with the dashboards and interfaces of the intelligent health-care suite as well as the quality of the learning health system. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-11-27T03:12:58Z |
| dc.date.available.none.fl_str_mv |
2023-11-27T03:12:58Z |
| dc.date.issued.fl_str_mv |
2023-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.doi.none.fl_str_mv |
10.3991/ijoe.v19i14.41949 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/669467 |
| dc.identifier.eissn.none.fl_str_mv |
26268493 |
| dc.identifier.journal.es_PE.fl_str_mv |
International journal of online and biomedical engineering |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85174001873 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85174001873 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
10.3991/ijoe.v19i14.41949 26268493 International journal of online and biomedical engineering 2-s2.0-85174001873 SCOPUS_ID:85174001873 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/669467 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
International Association of Online Engineering |
| dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
International journal of online and biomedical engineering |
| dc.source.volume.none.fl_str_mv |
19 |
| dc.source.issue.none.fl_str_mv |
14 |
| dc.source.beginpage.none.fl_str_mv |
76 |
| dc.source.endpage.none.fl_str_mv |
97 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/5/10.3991ijoe.v19i14.41949.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/4/10.3991ijoe.v19i14.41949.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/1/10.3991ijoe.v19i14.41949.pdf |
| bitstream.checksum.fl_str_mv |
d8bc041fbf5597cc0387a6c6b2dda54a dcc485375b90cfcca7e4a07897a81d3d 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 57ffef85de41636b2d963c0208f69ee0 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065952422100992 |
| spelling |
355d94e8d0501c09288cdec1cc52139a300d2759c8716e25fc908f2ca407b94aad856bb0e4a7e8f70d8a3f57263b9b232b8300f1524a3bbf68b7e2680e1ab2f7ba0bfd500Mita, VielkaCastillo, LilianaCastillo-Sequera, José LuisWong, Lenis2023-11-27T03:12:58Z2023-11-27T03:12:58Z2023-01-0110.3991/ijoe.v19i14.41949http://hdl.handle.net/10757/66946726268493International journal of online and biomedical engineering2-s2.0-85174001873SCOPUS_ID:851740018730000 0001 2196 144XThe health sector around the world faces the continuous challenge of improving the services provided to patients. Therefore, digital transformation in health services plays a key role in integrating new technologies such as artificial intelligence. However, the health system in Peru has not yet taken the big step towards digitising its services, currently ranking 71st according to the World Health Organisation (WHO). This article proposes a learning health system for the management and monitoring of private health services in Peru based on the three key components of intelligent health care: (1) a health data platform (HDP); (2) intelligent technologies (IT); and (3) an intelligent health care suite (HIS). The solution consists of four layers: (1) data source, (2) data warehousing, (3) data analytics, and (4) visualization. In layer 1, all data sources are selected to create a database. The proposed learning health system is built, and the data storage is executed through the extract, transform and load (ETL) process in layer 2. In layer 3, the Kaggle dataset and the decision tree (DT) and random forest (RF) algorithms are used to predict the diagnosis of disease, resulting in the RF algorithm having the best performance. Finally, in layer 4, the intelligent health-care suite dashboards and interfaces are designed. The proposed system was applied in a clinic focused on preventing chronic kidney disease. A total of 100 patients and six kidney health experts participated. The results proved that the diagnosis of chronic kidney disease by the learning health system had a low error rate in positive diagnoses (err = 1.12%). Additionally, it was demonstrated that experts were “satisfied” with the dashboards and interfaces of the intelligent health-care suite as well as the quality of the learning health system.Revisión por paresODS 3: Salud y BienestarODS 9: Industria, Innovación e InfraestructuraODS 4: Educación de Calidadapplication/pdfengInternational Association of Online Engineeringinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)International journal of online and biomedical engineering19147697reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCchronic kidney diseasedecision tree (DT)learning health-care systemmachine learningrandom forest (RF)A Learning Health-Care System for Improving Renal Health Services in Peru Using Data Analyticsinfo:eu-repo/semantics/article2023-11-27T03:12:59ZTHUMBNAIL10.3991ijoe.v19i14.41949.pdf.jpg10.3991ijoe.v19i14.41949.pdf.jpgGenerated Thumbnailimage/jpeg109665https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/5/10.3991ijoe.v19i14.41949.pdf.jpgd8bc041fbf5597cc0387a6c6b2dda54aMD55falseTEXT10.3991ijoe.v19i14.41949.pdf.txt10.3991ijoe.v19i14.41949.pdf.txtExtracted texttext/plain53100https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/4/10.3991ijoe.v19i14.41949.pdf.txtdcc485375b90cfcca7e4a07897a81d3dMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL10.3991ijoe.v19i14.41949.pdf10.3991ijoe.v19i14.41949.pdfapplication/pdf2400823https://repositorioacademico.upc.edu.pe/bitstream/10757/669467/1/10.3991ijoe.v19i14.41949.pdf57ffef85de41636b2d963c0208f69ee0MD51true10757/669467oai:repositorioacademico.upc.edu.pe:10757/6694672024-07-20 04:29:49.584Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.924177 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).