​​Reducción de la subjetividad en el proceso de clasificación de color de teñido de lotes de producción textil mediante machine learning​

Descripción del Articulo

Uno de los principales retos en la producción textil es reproducir lo mejor posible la tonalidad del color en la tela, tonalidad que se obtiene a partir de una muestra dada por el cliente. El procedimiento de evaluación del color normalmente tiene mucha subjetividad debido a la apreciación visual qu...

Descripción completa

Detalles Bibliográficos
Autores: ​​Cruz Hilacondo, Lucy Candy​, ​​Peche Puertas, Miguel Rafael​, Palomino Lopez, Hugo Miguel, Cayo Velasquez, Martin Giovanni
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/669755
Enlace del recurso:http://hdl.handle.net/10757/669755
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático supervisado
Sector textil
Espectrofotómetro
Clasificación de color
Outliers
Smote
Uniform manifold approximation and projection
Supervised machine learning
Textile sector
Spectrophotometer
Color classification
https://purl.org/pe-repo/ocde/ford#2.00.00
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Uno de los principales retos en la producción textil es reproducir lo mejor posible la tonalidad del color en la tela, tonalidad que se obtiene a partir de una muestra dada por el cliente. El procedimiento de evaluación del color normalmente tiene mucha subjetividad debido a la apreciación visual que hace el analista humano de calidad al evaluar un lote de teñido. Cuando se rechaza un lote de teñido y la diferencia de color no es muy evidente, se producen demoras en la decisión final, esta es la problemática en la empresa EcoTextil. Se investigó flujos de trabajo incluyendo algoritmos de aprendizaje supervisado para la clasificación de las partidas de teñido según tonalidad, reduciendo la subjetividad humana en la evaluación de la tonalidad del color. Para el diseño de los flujos de trabajo de clasificación se utilizó la Metodología Fundamental para la Ciencia de Datos de IBM (Rollins, 2015). Los flujos de trabajo automatizados propuestos fueron clasificados en flujos de alto, regular y bajo rendimiento, los flujos de alto rendimiento tienen en promedio un valor F1 de 0.92 que es mayor al valor F1 del flujo de trabajo actual, evaluación humana, que es de 0.82. La utilización de los flujos de trabajo automatizados propuestos significa un ahorro de 30,000 soles al año por reducción de horas hombre, unos 60,000 soles al año por reducción de reprocesos innecesarios, 144,000 soles al año por reducción de tiempos muertos y unos 30,000 soles al año por reducción de saldos de producción.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).