Desarrollo y validación conceptual de modelos de reconocimiento de las especies usando deep learning
Descripción del Articulo
El reconocimiento de imágenes es una tarea importante en el campo de la visión por computadora y por muchos investigadores en los últimos años. Con la aparición del aprendizaje profundo, se ha logrado un gran avance en el desarrollo de modelos de reconocimiento de imágenes. El desarrollo y la valida...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/667866 |
Enlace del recurso: | http://hdl.handle.net/10757/667866 |
Nivel de acceso: | acceso abierto |
Materia: | Aprendizaje profundo Reconocimiento de especies Redes neuronales convolucionales Validación y técnicas en las CNN Deep learning Species recognition Convolutional neural networks Validation and techniques in CNN http://purl.org/pe-repo/ocde/ford#2.00.00 https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | El reconocimiento de imágenes es una tarea importante en el campo de la visión por computadora y por muchos investigadores en los últimos años. Con la aparición del aprendizaje profundo, se ha logrado un gran avance en el desarrollo de modelos de reconocimiento de imágenes. El desarrollo y la validación conceptual de los modelos de reconocimiento de imágenes son importantes para garantizar su eficacia en la tarea específica para la que se diseñaron. En el desarrollo, se definen los requisitos del sistema, se seleccionan las características relevantes y se determina la arquitectura adecuada para el modelo. La validación conceptual implica la evaluación de los modelos con datos de prueba y la comparación con otros modelos existentes en el campo. En conclusión, el desarrollo y la validación conceptual son esenciales en el proceso de creación de modelos de reconocimiento de imágenes. La combinación del aprendizaje profundo y técnicas específicas de preprocesamiento de imágenes han permitido un gran avance en esta área y han demostrado ser muy efectivas en la tarea de reconocimiento de imágenes. Sin embargo, es importante tener en cuenta la importancia de un conjunto de datos adecuado para el éxito del modelo. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).