Diseño de un controlador de PH basado en redes neuronales para el proceso de hidrólisis enzimática de producción de bioetanol
Descripción del Articulo
Los biocombustibles surgieron como una alternativa renovable a los combustibles convencionales, debido a la reducción de las reservas de petróleo y la contaminación ambiental que ocasiona el uso de combustibles fósiles; sin embargo, la reducción de costos para la producción de biocombustibles, espec...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2019 |
Institución: | Universidad Nacional de Ingeniería |
Repositorio: | UNI-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/18991 |
Enlace del recurso: | http://hdl.handle.net/20.500.14076/18991 |
Nivel de acceso: | acceso abierto |
Materia: | Redes neuronales Controladores Controlador híbrido https://purl.org/pe-repo/ocde/ford#2.03.02 |
Sumario: | Los biocombustibles surgieron como una alternativa renovable a los combustibles convencionales, debido a la reducción de las reservas de petróleo y la contaminación ambiental que ocasiona el uso de combustibles fósiles; sin embargo, la reducción de costos para la producción de biocombustibles, específicamente bioetanol de segunda generación evoluciona a un ritmo muy lento, a pesar de los numerosos aportes realizados por investigadores, universidades y la industria. Este estudio está particularmente interesado en aportar con la reducción de costos de producción de bioetanol de segunda generación mediante sistemas de control capaces de soportar el uso de nuevas enzimas para maximizar la generación de azúcares, que sirven como sustrato para la fermentación de etanol. Para este propósito, el objetivo de este trabajo es diseñar un controlador de pH basado en redes neuronales para el proceso de hidrólisis enzimática, el cual es un proceso clave que requiere un control preciso del nivel de pH para que las enzimas cumplan su trabajo exitosamente puesto que, pequeñas desviaciones del valor óptimo de pH pueden causar una caída significativa en la eficiencia del proceso. Se proponen como alternativas de solución: un controlador neuronal inverso directo, un controlador neuronal inverso directo adaptativo, un controlador de modelo interno con modelos neuronales, un controlador NARMA-L2 y un controlador NARMA-L2 adaptativo. Asimismo, sus rendimientos son comparados ante la ausencia y presencia de perturbaciones. Finalmente, el controlador NARMA-L2 adaptativo es seleccionado como el mejor controlador entre los propuestos debido a su precisión en el seguimiento del nivel de pH óptimo en función de la enzima empleada. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).