Convergencia de árboles aleatorios en la métrica de Gromov-Hausdorff

Descripción del Articulo

El presente trabajo estudiamos ciertos árboles aleatorios finitos. Además, probamos su convergencia, bajo un escalamiento y condicionamiento adecuados, a un objeto aleatorio continúo llamado Árbol Aleatorio Continuo (AAC). Más precisamente, en la primera parte del trabajo introducimos la noción de á...

Descripción completa

Detalles Bibliográficos
Autor: Chávez Sarmiento, Enrique Idael
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/17640
Enlace del recurso:http://hdl.handle.net/20.500.14076/17640
Nivel de acceso:acceso abierto
Materia:Árbol aleatorio
Función de contorno
Árbol aleatorio continuo (AAC)
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:El presente trabajo estudiamos ciertos árboles aleatorios finitos. Además, probamos su convergencia, bajo un escalamiento y condicionamiento adecuados, a un objeto aleatorio continúo llamado Árbol Aleatorio Continuo (AAC). Más precisamente, en la primera parte del trabajo introducimos la noción de árbol enraizado ordenado finito, el tipo de árbol que da lugar a los árboles aleatorios de nuestro estudio. Asociamos a estos árboles dos funciones, la función de altura y la función de contorno. Los principales resultados de esta primera parte son teoremas de convergencia de estas funciones a objetos conocidos en probabilidad asociados al browniano. Finalmente, en la segunda parte de este trabajo, usamos la excursión browniana como una versión continua de la función de contorno, estudiada previamente, para definir el AAC. Concluimos mostrando que el AAC puede ser obtenido como el límite de árboles aleatorios finitos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).