Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L

Descripción del Articulo

El objetivo de la tesis es evaluar la capacidad de predicción de dos técnicas de regionalización hidrológica: el Análisis Regional de Frecuencia (ARF) y la Región de Influencia (RI) para precipitaciones máximas diarias basadas en el uso de Momentos L en la zona Sur – Occidental del Perú correspondie...

Descripción completa

Detalles Bibliográficos
Autor: Roca Calderón, Wilmer Dennys
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/22235
Enlace del recurso:http://hdl.handle.net/20.500.14076/22235
Nivel de acceso:acceso abierto
Materia:Precipitaciones
Estaciones pluviométricas
Teoría de momentos L
https://purl.org/pe-repo/ocde/ford#2.01.01
id UUNI_2e09855888b5be14b164df6f282772c6
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/22235
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.es.fl_str_mv Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L
title Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L
spellingShingle Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L
Roca Calderón, Wilmer Dennys
Precipitaciones
Estaciones pluviométricas
Teoría de momentos L
https://purl.org/pe-repo/ocde/ford#2.01.01
title_short Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L
title_full Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L
title_fullStr Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L
title_full_unstemmed Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L
title_sort Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - L
dc.creator.none.fl_str_mv Roca Calderón, Wilmer Dennys
author Roca Calderón, Wilmer Dennys
author_facet Roca Calderón, Wilmer Dennys
author_role author
dc.contributor.advisor.fl_str_mv Kuroiwa Zevallos, Julio Martín
dc.contributor.author.fl_str_mv Roca Calderón, Wilmer Dennys
dc.subject.es.fl_str_mv Precipitaciones
Estaciones pluviométricas
Teoría de momentos L
topic Precipitaciones
Estaciones pluviométricas
Teoría de momentos L
https://purl.org/pe-repo/ocde/ford#2.01.01
dc.subject.ocde.es.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.01.01
description El objetivo de la tesis es evaluar la capacidad de predicción de dos técnicas de regionalización hidrológica: el Análisis Regional de Frecuencia (ARF) y la Región de Influencia (RI) para precipitaciones máximas diarias basadas en el uso de Momentos L en la zona Sur – Occidental del Perú correspondiente a seis (06) departamentos: Huancavelica, Ica, Ayacucho, Apurímac, Arequipa y Moquegua. Previo al análisis propio de regionalización se realizó un análisis exploratorio de datos para retirar las estaciones cuyos datos presentan tendencias y/o cambios en la media, ya que las funciones de distribución de frecuencias exigen que los datos tengan carácter estacionario. Inicialmente, se contó con 368 estaciones pluviométricas de los cuales, luego de la depuración, permanecieron 173, es decir, solo un 47% del total inicial, resultando una densidad de estaciones pluviométricas de 1 estación cada 1340 km2. Con el Análisis Regional de Frecuencia (ARF) se buscó determinar grupos de estaciones hidrológicamente similares, los cuales conformarían las regiones, siempre y cuando los datos de las estaciones de la región presenten la misma distribución de frecuencias. Previamente, se realizó un agrupamiento (clustering) a través de los métodos Ward y K-Means. Este agrupamiento se realizó según la similitud entre estaciones basada en características geográficas como la altitud, longitud y latitud. Luego, se evaluaron los grupos así formados según la prueba de homogeneidad de Hosking y Wallis (1997) para afinar estos grupos resultando ocho (08) regiones hidrológicas. Lo único que diferencia a las estaciones de una misma región es un factor de escala llamado índice de tormenta, el cual se usó para hallar los cuantiles respectivos en cada estación. Finalmente, se realizó una interpolación espacial de los índices de tormenta para estimar los cuantiles precipitaciones máximas en cualquier zona de interés. Por otra parte, con el método de Región de Influencia (RI) se buscó formar regiones para una sola zona de interés. Es decir, el método no se encarga de delimitar regiones basadas en una sola distribución de frecuencias, sino se enfoca únicamente en una zona de interés para la cual se evalúan datos de estaciones similares. Al igual que el método ARF, en esta tesis la similitud se basó en características geográficas. El requisito principal de este grupo de estaciones es que deben satisfacer la regla 5T y el criterio de homogeneidad. La regla 5T establece que las estaciones, en conjunto, deben tener como mínimo un número de datos tal como cinco veces el periodo de retorno en estudio. Es decir, si estamos evaluando para un periodo de 50 años, el número de datos agrupados, como mínimo, debe ser 250 datos. Se podrían tomar más datos (o lo mismo, más estaciones), sin embargo, esto podría traer disimilitudes con la zona de interés. Para hacer la verificación del método se realizó la comparación de los cuantiles de 8 estaciones (ubicadas en las 8 regiones) a través del índice de tormenta con respecto a los cuantiles calculados a partir de un análisis local y el método de regionalización del IILA – SENAMHI - UNI. En general, los métodos de regionalización ARF y RI presentan resultados satisfactorios en 5 de las 8 estaciones usadas en la verificación del método (teniendo en cuenta que dos de las estaciones, cuyos resultados no se ajustan a los valores esperados de acuerdo a los datos y los otros métodos, se encuentran en o cerca de la franja costera), siendo una de las ventajas principales, el aprovechamiento de un mayor número de registros al incluir en el análisis de frecuencias los datos estaciones vecinas teniendo en cuenta el limitado registro pluviométrico que, generalmente, se encuentra disponible.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-06-09T20:18:12Z
dc.date.available.none.fl_str_mv 2022-06-09T20:18:12Z
dc.date.issued.fl_str_mv 2021
dc.type.es.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/22235
url http://hdl.handle.net/20.500.14076/22235
dc.language.iso.es.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.publisher.country.es.fl_str_mv PE
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/3/roca_cw.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/5/roca_cw%28acta%29.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/1/roca_cw.pdf
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/4/roca_cw%28acta%29.pdf
bitstream.checksum.fl_str_mv c6ee342c42fa3cd7bc8795c2c5b7ff9a
96c1091f34e4286126136e952c7c4fe2
8a4605be74aa9ea9d79846c1fba20a33
3a9ee485d60e0b28096c00f856c40c28
bef941aeaf2d7aee0afd7deb918d9837
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1840085681388388352
spelling Kuroiwa Zevallos, Julio MartínRoca Calderón, Wilmer DennysRoca Calderón, Wilmer Dennys2022-06-09T20:18:12Z2022-06-09T20:18:12Z2021http://hdl.handle.net/20.500.14076/22235El objetivo de la tesis es evaluar la capacidad de predicción de dos técnicas de regionalización hidrológica: el Análisis Regional de Frecuencia (ARF) y la Región de Influencia (RI) para precipitaciones máximas diarias basadas en el uso de Momentos L en la zona Sur – Occidental del Perú correspondiente a seis (06) departamentos: Huancavelica, Ica, Ayacucho, Apurímac, Arequipa y Moquegua. Previo al análisis propio de regionalización se realizó un análisis exploratorio de datos para retirar las estaciones cuyos datos presentan tendencias y/o cambios en la media, ya que las funciones de distribución de frecuencias exigen que los datos tengan carácter estacionario. Inicialmente, se contó con 368 estaciones pluviométricas de los cuales, luego de la depuración, permanecieron 173, es decir, solo un 47% del total inicial, resultando una densidad de estaciones pluviométricas de 1 estación cada 1340 km2. Con el Análisis Regional de Frecuencia (ARF) se buscó determinar grupos de estaciones hidrológicamente similares, los cuales conformarían las regiones, siempre y cuando los datos de las estaciones de la región presenten la misma distribución de frecuencias. Previamente, se realizó un agrupamiento (clustering) a través de los métodos Ward y K-Means. Este agrupamiento se realizó según la similitud entre estaciones basada en características geográficas como la altitud, longitud y latitud. Luego, se evaluaron los grupos así formados según la prueba de homogeneidad de Hosking y Wallis (1997) para afinar estos grupos resultando ocho (08) regiones hidrológicas. Lo único que diferencia a las estaciones de una misma región es un factor de escala llamado índice de tormenta, el cual se usó para hallar los cuantiles respectivos en cada estación. Finalmente, se realizó una interpolación espacial de los índices de tormenta para estimar los cuantiles precipitaciones máximas en cualquier zona de interés. Por otra parte, con el método de Región de Influencia (RI) se buscó formar regiones para una sola zona de interés. Es decir, el método no se encarga de delimitar regiones basadas en una sola distribución de frecuencias, sino se enfoca únicamente en una zona de interés para la cual se evalúan datos de estaciones similares. Al igual que el método ARF, en esta tesis la similitud se basó en características geográficas. El requisito principal de este grupo de estaciones es que deben satisfacer la regla 5T y el criterio de homogeneidad. La regla 5T establece que las estaciones, en conjunto, deben tener como mínimo un número de datos tal como cinco veces el periodo de retorno en estudio. Es decir, si estamos evaluando para un periodo de 50 años, el número de datos agrupados, como mínimo, debe ser 250 datos. Se podrían tomar más datos (o lo mismo, más estaciones), sin embargo, esto podría traer disimilitudes con la zona de interés. Para hacer la verificación del método se realizó la comparación de los cuantiles de 8 estaciones (ubicadas en las 8 regiones) a través del índice de tormenta con respecto a los cuantiles calculados a partir de un análisis local y el método de regionalización del IILA – SENAMHI - UNI. En general, los métodos de regionalización ARF y RI presentan resultados satisfactorios en 5 de las 8 estaciones usadas en la verificación del método (teniendo en cuenta que dos de las estaciones, cuyos resultados no se ajustan a los valores esperados de acuerdo a los datos y los otros métodos, se encuentran en o cerca de la franja costera), siendo una de las ventajas principales, el aprovechamiento de un mayor número de registros al incluir en el análisis de frecuencias los datos estaciones vecinas teniendo en cuenta el limitado registro pluviométrico que, generalmente, se encuentra disponible.The objective of the thesis is to evaluate predictability of two hydrological regionalization techniques: Regional Frequency Analysis (RFA) and Region of Influence (ROI) for maximum daily rainfall based on L – Moments, for South - Western Peru in six (06) departments: Huancavelica, Ica, Ayacucho, Apurímac, Arequipa and Moquegua. Prior to the regionalization analysis itself, an exploratory data analysis was carried out in order to remove those stations which data showed trends and / or changes in the mean since the functions of frequency distribution require stationary data. Initially, there were 368 rainfall stations, of which, after removal, 173 remained, that is, only 47% of the initial total, resulting in a rainfall stations density of 1 station every 1340 km2. The Regional Frequency Analysis (RFA) was made to find hydrologically similar stations groups, which would compose the regions, as long as the rainfall stations data, in the region, have the same frequency distribution. Previously, clustering was performed through the Ward and K-Means methods. This grouping was carried out according to the similarity between stations based on geographical characteristics such as altitude, longitude and latitude. Then, these groups were evaluated according to the Hosking and Wallis’ test homogeneity criterion (1997) in order to refine these groups and define eight (08) regions. Frequency distributions are identical apart from a site – specific scale factor called the storm index, which is used to find the respective quantiles in each station. Finally, a spatial interpolation of storm indices was carried out to estimate the maximum precipitation quantiles in any area of interest. On the other hand, the Region of Influence (RI) method was used to form regions for a single area of interest. That is, it is not performed to delineate regions based on a single frequency distribution, but focuses only on a single area of interest for which data from similar stations is evaluated. This similarity was based on those geographical characteristics used for the ARF method. The main requirement of this pooling group is that they must satisfy the 5T rule and the homogeneity criterion. The 5T rule establishes that the stations’ record, as a whole, must have at least a data length such as five times the return period, subject of study. For instance, if a 50 return period analysis is being carried out, the number of grouped data, as a minimum, must be 250 data. More data could be taken (or more stations), however, this would bring dissimilarities with the area of interest. In order to perform the method validation, quantiles of eight 8 stations (located in 8 regions) evaluated with the storm index were compared to quantiles calculated from a local analysis and the IILA - SENAMHI - UNI regionalization method. In general, regionalization methods as ARF and ROI have showed satisfactory results in 5 of the 8 stations used in the verification of the method (considering that two of the stations, which results do not adjust the expected values according to the data and the other methods, are at or near the coastal strip), being one of the main advantages the use of a greater number of records when including the neighboring stations data in the analysis of frequencies, considering the limited rainfall records which are usually found available.Submitted by Quispe Rabanal Flavio (flaviofime@hotmail.com) on 2022-06-09T20:18:12Z No. of bitstreams: 1 roca_cw.pdf: 24027815 bytes, checksum: 3a9ee485d60e0b28096c00f856c40c28 (MD5)Made available in DSpace on 2022-06-09T20:18:12Z (GMT). No. of bitstreams: 1 roca_cw.pdf: 24027815 bytes, checksum: 3a9ee485d60e0b28096c00f856c40c28 (MD5) Previous issue date: 2021Tesisapplication/pdfspaUniversidad Nacional de IngenieríaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIPrecipitacionesEstaciones pluviométricasTeoría de momentos Lhttps://purl.org/pe-repo/ocde/ford#2.01.01Regionalización de precipitaciones máximas diarias anuales en la zona sur-occidental del Perú usando momentos - Linfo:eu-repo/semantics/bachelorThesisSUNEDUIngeniero CivilUniversidad Nacional de Ingeniería. Facultad de Ingeniería CivilTítulo ProfesionalIngeniería CivilIngenieríahttps://orcid.org/0000-0003-3637-965X0827212840411368https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#tituloProfesional732016Rodríguez Zubiate, EdgarSilva Dávila, Marisa RosanaTEXTroca_cw.pdf.txtroca_cw.pdf.txtExtracted texttext/plain452576http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/3/roca_cw.pdf.txtc6ee342c42fa3cd7bc8795c2c5b7ff9aMD53roca_cw(acta).pdf.txtroca_cw(acta).pdf.txtExtracted texttext/plain1620http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/5/roca_cw%28acta%29.pdf.txt96c1091f34e4286126136e952c7c4fe2MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALroca_cw.pdfroca_cw.pdfapplication/pdf24027815http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/1/roca_cw.pdf3a9ee485d60e0b28096c00f856c40c28MD51roca_cw(acta).pdfroca_cw(acta).pdfapplication/pdf90773http://cybertesis.uni.edu.pe/bitstream/20.500.14076/22235/4/roca_cw%28acta%29.pdfbef941aeaf2d7aee0afd7deb918d9837MD5420.500.14076/22235oai:cybertesis.uni.edu.pe:20.500.14076/222352022-11-26 02:58:34.027Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.977305
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).