Núcleo promedio de funciones convexas y algoritmos en computación convexa
Descripción del Articulo
En el artículo titulado The kernel Average for Two convex functions and its application to the extension and Representation of Monotone Operators dado por H.Bauschke y X.Wang se presenta una nueva transformación de funciones convexas llamada el Núcleo promedio de funciones convexas, el cual es una g...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2013 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | UNI-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/1165 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14076/1165 |
| Nivel de acceso: | acceso abierto |
| Materia: | Núcleo promedio Funciones convexas Computación convexa |
| id |
UUNI_189806816dd6f6e830cc58d09fb57c32 |
|---|---|
| oai_identifier_str |
oai:cybertesis.uni.edu.pe:20.500.14076/1165 |
| network_acronym_str |
UUNI |
| network_name_str |
UNI-Tesis |
| repository_id_str |
1534 |
| dc.title.es.fl_str_mv |
Núcleo promedio de funciones convexas y algoritmos en computación convexa |
| title |
Núcleo promedio de funciones convexas y algoritmos en computación convexa |
| spellingShingle |
Núcleo promedio de funciones convexas y algoritmos en computación convexa Lara Ávila, César Jesús Núcleo promedio Funciones convexas Computación convexa |
| title_short |
Núcleo promedio de funciones convexas y algoritmos en computación convexa |
| title_full |
Núcleo promedio de funciones convexas y algoritmos en computación convexa |
| title_fullStr |
Núcleo promedio de funciones convexas y algoritmos en computación convexa |
| title_full_unstemmed |
Núcleo promedio de funciones convexas y algoritmos en computación convexa |
| title_sort |
Núcleo promedio de funciones convexas y algoritmos en computación convexa |
| dc.creator.none.fl_str_mv |
Lara Ávila, César Jesús |
| author |
Lara Ávila, César Jesús |
| author_facet |
Lara Ávila, César Jesús |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
García Ramos, Yboon Victoria |
| dc.contributor.author.fl_str_mv |
Lara Ávila, César Jesús |
| dc.subject.es.fl_str_mv |
Núcleo promedio Funciones convexas Computación convexa |
| topic |
Núcleo promedio Funciones convexas Computación convexa |
| description |
En el artículo titulado The kernel Average for Two convex functions and its application to the extension and Representation of Monotone Operators dado por H.Bauschke y X.Wang se presenta una nueva transformación de funciones convexas llamada el Núcleo promedio de funciones convexas, el cual es una generalización del promedio proximal o de la Envoltura de Attouch-Wets, aplicaciones muy importantes en todo el análisis convexo. En una primera parte de este trabajo, vía la variación de la función g en la definición anterior mostraremos algunos ejemplos de la teoría como es el promedio aritmético, el promedio epigráfico, el promedio proximal, la envoltura de Attouch-Wets de funciones convexas y también mediante un gráfico mostraremos un aplicación del promedio proximal: la transformación continua de una función convexa en otra. También enunciaremos y demostraremos las propiedades fundamentales de este operador como es la Conjugada de Fenchel, propiedades de su Dominio y la del Subdiferencial. Cuando aplicamos la función Fitzpatrick, la conjugada de la función Fitzpatrick asociada con un operador monótono y un núcleo apropiado, el Núcleo Promedio produce un autoconjugado, el cual es usado para encontrar una extensión monótono maximal de un operador monótono. Este resultado es dado por el teorema de Extensión y Representación, que además, resuelve uno de los problemas abiertos dado en el artículo de Simon Fitzpatrick. |
| publishDate |
2013 |
| dc.date.accessioned.none.fl_str_mv |
2015-07-03T20:05:48Z |
| dc.date.available.none.fl_str_mv |
2015-07-03T20:05:48Z |
| dc.date.issued.fl_str_mv |
2013 |
| dc.type.es.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14076/1165 |
| url |
http://hdl.handle.net/20.500.14076/1165 |
| dc.language.iso.es.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es.fl_str_mv |
application/pdf |
| dc.publisher.es.fl_str_mv |
Universidad Nacional de Ingeniería |
| dc.source.es.fl_str_mv |
Universidad Nacional de Ingeniería Repositorio Institucional - UNI |
| dc.source.none.fl_str_mv |
reponame:UNI-Tesis instname:Universidad Nacional de Ingeniería instacron:UNI |
| instname_str |
Universidad Nacional de Ingeniería |
| instacron_str |
UNI |
| institution |
UNI |
| reponame_str |
UNI-Tesis |
| collection |
UNI-Tesis |
| bitstream.url.fl_str_mv |
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/1165/3/lara_ac.pdf.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/1165/1/lara_ac.pdf http://cybertesis.uni.edu.pe/bitstream/20.500.14076/1165/2/license.txt |
| bitstream.checksum.fl_str_mv |
55e2b83c6d74705d8ae0b6bac71cf55f d95451b192bdbe22bf86542fc225b2cf 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional - UNI |
| repository.mail.fl_str_mv |
repositorio@uni.edu.pe |
| _version_ |
1840085450438475776 |
| spelling |
García Ramos, Yboon VictoriaLara Ávila, César JesúsLara Ávila, César Jesús2015-07-03T20:05:48Z2015-07-03T20:05:48Z2013http://hdl.handle.net/20.500.14076/1165En el artículo titulado The kernel Average for Two convex functions and its application to the extension and Representation of Monotone Operators dado por H.Bauschke y X.Wang se presenta una nueva transformación de funciones convexas llamada el Núcleo promedio de funciones convexas, el cual es una generalización del promedio proximal o de la Envoltura de Attouch-Wets, aplicaciones muy importantes en todo el análisis convexo. En una primera parte de este trabajo, vía la variación de la función g en la definición anterior mostraremos algunos ejemplos de la teoría como es el promedio aritmético, el promedio epigráfico, el promedio proximal, la envoltura de Attouch-Wets de funciones convexas y también mediante un gráfico mostraremos un aplicación del promedio proximal: la transformación continua de una función convexa en otra. También enunciaremos y demostraremos las propiedades fundamentales de este operador como es la Conjugada de Fenchel, propiedades de su Dominio y la del Subdiferencial. Cuando aplicamos la función Fitzpatrick, la conjugada de la función Fitzpatrick asociada con un operador monótono y un núcleo apropiado, el Núcleo Promedio produce un autoconjugado, el cual es usado para encontrar una extensión monótono maximal de un operador monótono. Este resultado es dado por el teorema de Extensión y Representación, que además, resuelve uno de los problemas abiertos dado en el artículo de Simon Fitzpatrick.Submitted by Admin Admin (admin@uni.edu.pe) on 2015-07-03T20:05:48Z No. of bitstreams: 1 lara_ac.pdf: 1374819 bytes, checksum: d95451b192bdbe22bf86542fc225b2cf (MD5)Made available in DSpace on 2015-07-03T20:05:48Z (GMT). No. of bitstreams: 1 lara_ac.pdf: 1374819 bytes, checksum: d95451b192bdbe22bf86542fc225b2cf (MD5)Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNINúcleo promedioFunciones convexasComputación convexaNúcleo promedio de funciones convexas y algoritmos en computación convexainfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en MatemáticaUniversidad Nacional de Ingeniería. Facultad de CienciasTítulo ProfesionalMatemáticaLicenciaturaTEXTlara_ac.pdf.txtlara_ac.pdf.txtExtracted texttext/plain146766http://cybertesis.uni.edu.pe/bitstream/20.500.14076/1165/3/lara_ac.pdf.txt55e2b83c6d74705d8ae0b6bac71cf55fMD53ORIGINALlara_ac.pdflara_ac.pdfapplication/pdf1374819http://cybertesis.uni.edu.pe/bitstream/20.500.14076/1165/1/lara_ac.pdfd95451b192bdbe22bf86542fc225b2cfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/1165/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.14076/1165oai:cybertesis.uni.edu.pe:20.500.14076/11652019-08-21 15:46:59.271Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).