Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions

Descripción del Articulo

We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally si...

Descripción completa

Detalles Bibliográficos
Autor: Nieto Chaupis, Huber
Formato: objeto de conferencia
Fecha de Publicación:2017
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/330
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/330
http://dx.doi.org/10.1109/INTERCON.2017.8079636
https://ieeexplore.ieee.org/abstract/document/8079636
Nivel de acceso:acceso embargado
Materia:Beamforming
Monte Carlo methods
Beamforming technique
Closed-form expression
Delay and sum beamforming
Delay and sums
Dirac delta function
Input functions
Model parameters
Strong nonlinearity
Delta functions
id UUCH_82f25de6afb7a665634560741e774f70
oai_identifier_str oai:repositorio.uch.edu.pe:uch/330
network_acronym_str UUCH
network_name_str UCH-Institucional
repository_id_str 4783
spelling Nieto Chaupis, Huber2019-08-18T04:08:57Z2019-08-18T04:08:57Z2017-08Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú.http://repositorio.uch.edu.pe/handle/uch/330http://dx.doi.org/10.1109/INTERCON.2017.8079636https://ieeexplore.ieee.org/abstract/document/807963610.1109/INTERCON.2017.8079636IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON2-s2.0-85040006154We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved.Submitted by sistemas uch (sistemas@uch.edu.pe) on 2019-08-18T04:08:57Z No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5)Made available in DSpace on 2019-08-18T04:08:57Z (GMT). No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5) Previous issue date: 2017-08engInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/articleinfo:eu-repo/semantics/embargoedAccessRepositorio Institucional - UCHUniversidad de Ciencias y Humanidadesreponame:UCH-Institucionalinstname:Universidad de Ciencias y Humanidadesinstacron:UCHBeamformingMonte Carlo methodsBeamforming techniqueClosed-form expressionDelay and sum beamformingDelay and sumsDirac delta functionInput functionsModel parametersStrong nonlinearityDelta functionsGeneralization of the classical delay-and-sum technique by using nonlinear dirac-delta functionsinfo:eu-repo/semantics/conferenceObjectuch/330oai:repositorio.uch.edu.pe:uch/3302019-12-20 18:34:00.829Repositorio UCHuch.dspace@gmail.com
dc.title.en_PE.fl_str_mv Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
title Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
spellingShingle Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
Nieto Chaupis, Huber
Beamforming
Monte Carlo methods
Beamforming technique
Closed-form expression
Delay and sum beamforming
Delay and sums
Dirac delta function
Input functions
Model parameters
Strong nonlinearity
Delta functions
title_short Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
title_full Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
title_fullStr Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
title_full_unstemmed Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
title_sort Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
author Nieto Chaupis, Huber
author_facet Nieto Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto Chaupis, Huber
dc.subject.en.fl_str_mv Beamforming
Monte Carlo methods
Beamforming technique
Closed-form expression
Delay and sum beamforming
Delay and sums
Dirac delta function
Input functions
Model parameters
Strong nonlinearity
Delta functions
topic Beamforming
Monte Carlo methods
Beamforming technique
Closed-form expression
Delay and sum beamforming
Delay and sums
Dirac delta function
Input functions
Model parameters
Strong nonlinearity
Delta functions
description We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2019-08-18T04:08:57Z
dc.date.available.none.fl_str_mv 2019-08-18T04:08:57Z
dc.date.issued.fl_str_mv 2017-08
dc.type.en_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.citation.en_PE.fl_str_mv Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú.
dc.identifier.uri.none.fl_str_mv http://repositorio.uch.edu.pe/handle/uch/330
http://dx.doi.org/10.1109/INTERCON.2017.8079636
https://ieeexplore.ieee.org/abstract/document/8079636
dc.identifier.doi.en_PE.fl_str_mv 10.1109/INTERCON.2017.8079636
dc.identifier.journal.en_PE.fl_str_mv IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85040006154
identifier_str_mv Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú.
10.1109/INTERCON.2017.8079636
IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON
2-s2.0-85040006154
url http://repositorio.uch.edu.pe/handle/uch/330
http://dx.doi.org/10.1109/INTERCON.2017.8079636
https://ieeexplore.ieee.org/abstract/document/8079636
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.en_PE.fl_str_mv info:eu-repo/semantics/article
dc.rights.en_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.publisher.en_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.en_PE.fl_str_mv Repositorio Institucional - UCH
Universidad de Ciencias y Humanidades
dc.source.none.fl_str_mv reponame:UCH-Institucional
instname:Universidad de Ciencias y Humanidades
instacron:UCH
instname_str Universidad de Ciencias y Humanidades
instacron_str UCH
institution UCH
reponame_str UCH-Institucional
collection UCH-Institucional
repository.name.fl_str_mv Repositorio UCH
repository.mail.fl_str_mv uch.dspace@gmail.com
_version_ 1835549164711182336
score 13.9573765
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).