Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
Descripción del Articulo
We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally si...
| Autor: | |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad de Ciencias y Humanidades |
| Repositorio: | UCH-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.uch.edu.pe:uch/330 |
| Enlace del recurso: | http://repositorio.uch.edu.pe/handle/uch/330 http://dx.doi.org/10.1109/INTERCON.2017.8079636 https://ieeexplore.ieee.org/abstract/document/8079636 |
| Nivel de acceso: | acceso embargado |
| Materia: | Beamforming Monte Carlo methods Beamforming technique Closed-form expression Delay and sum beamforming Delay and sums Dirac delta function Input functions Model parameters Strong nonlinearity Delta functions |
| id |
UUCH_82f25de6afb7a665634560741e774f70 |
|---|---|
| oai_identifier_str |
oai:repositorio.uch.edu.pe:uch/330 |
| network_acronym_str |
UUCH |
| network_name_str |
UCH-Institucional |
| repository_id_str |
4783 |
| spelling |
Nieto Chaupis, Huber2019-08-18T04:08:57Z2019-08-18T04:08:57Z2017-08Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú.http://repositorio.uch.edu.pe/handle/uch/330http://dx.doi.org/10.1109/INTERCON.2017.8079636https://ieeexplore.ieee.org/abstract/document/807963610.1109/INTERCON.2017.8079636IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON2-s2.0-85040006154We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved.Submitted by sistemas uch (sistemas@uch.edu.pe) on 2019-08-18T04:08:57Z No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5)Made available in DSpace on 2019-08-18T04:08:57Z (GMT). No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5) Previous issue date: 2017-08engInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/articleinfo:eu-repo/semantics/embargoedAccessRepositorio Institucional - UCHUniversidad de Ciencias y Humanidadesreponame:UCH-Institucionalinstname:Universidad de Ciencias y Humanidadesinstacron:UCHBeamformingMonte Carlo methodsBeamforming techniqueClosed-form expressionDelay and sum beamformingDelay and sumsDirac delta functionInput functionsModel parametersStrong nonlinearityDelta functionsGeneralization of the classical delay-and-sum technique by using nonlinear dirac-delta functionsinfo:eu-repo/semantics/conferenceObjectuch/330oai:repositorio.uch.edu.pe:uch/3302019-12-20 18:34:00.829Repositorio UCHuch.dspace@gmail.com |
| dc.title.en_PE.fl_str_mv |
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions |
| title |
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions |
| spellingShingle |
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions Nieto Chaupis, Huber Beamforming Monte Carlo methods Beamforming technique Closed-form expression Delay and sum beamforming Delay and sums Dirac delta function Input functions Model parameters Strong nonlinearity Delta functions |
| title_short |
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions |
| title_full |
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions |
| title_fullStr |
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions |
| title_full_unstemmed |
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions |
| title_sort |
Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions |
| author |
Nieto Chaupis, Huber |
| author_facet |
Nieto Chaupis, Huber |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Nieto Chaupis, Huber |
| dc.subject.en.fl_str_mv |
Beamforming Monte Carlo methods Beamforming technique Closed-form expression Delay and sum beamforming Delay and sums Dirac delta function Input functions Model parameters Strong nonlinearity Delta functions |
| topic |
Beamforming Monte Carlo methods Beamforming technique Closed-form expression Delay and sum beamforming Delay and sums Dirac delta function Input functions Model parameters Strong nonlinearity Delta functions |
| description |
We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2019-08-18T04:08:57Z |
| dc.date.available.none.fl_str_mv |
2019-08-18T04:08:57Z |
| dc.date.issued.fl_str_mv |
2017-08 |
| dc.type.en_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.citation.en_PE.fl_str_mv |
Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú. |
| dc.identifier.uri.none.fl_str_mv |
http://repositorio.uch.edu.pe/handle/uch/330 http://dx.doi.org/10.1109/INTERCON.2017.8079636 https://ieeexplore.ieee.org/abstract/document/8079636 |
| dc.identifier.doi.en_PE.fl_str_mv |
10.1109/INTERCON.2017.8079636 |
| dc.identifier.journal.en_PE.fl_str_mv |
IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON |
| dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85040006154 |
| identifier_str_mv |
Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú. 10.1109/INTERCON.2017.8079636 IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON 2-s2.0-85040006154 |
| url |
http://repositorio.uch.edu.pe/handle/uch/330 http://dx.doi.org/10.1109/INTERCON.2017.8079636 https://ieeexplore.ieee.org/abstract/document/8079636 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.en_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.rights.en_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.publisher.en_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.en_PE.fl_str_mv |
Repositorio Institucional - UCH Universidad de Ciencias y Humanidades |
| dc.source.none.fl_str_mv |
reponame:UCH-Institucional instname:Universidad de Ciencias y Humanidades instacron:UCH |
| instname_str |
Universidad de Ciencias y Humanidades |
| instacron_str |
UCH |
| institution |
UCH |
| reponame_str |
UCH-Institucional |
| collection |
UCH-Institucional |
| repository.name.fl_str_mv |
Repositorio UCH |
| repository.mail.fl_str_mv |
uch.dspace@gmail.com |
| _version_ |
1835549164711182336 |
| score |
13.9573765 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).