Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school

Descripción del Articulo

In the current educational context, physical education and student sports development face challenges marked by continuous technological evolution. This study proposes a predictive model supported by machine learning and artificial intelligence (AI), establishing a connection between cardiorespirato...

Descripción completa

Detalles Bibliográficos
Autores: Ovalle, Christian, Sánchez Puche, Everardo, Ortiz Gomez, Genesis Andrea, Cornejo Vega, Jairo Samir
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14643
Enlace del recurso:https://hdl.handle.net/20.500.12867/14643
https://doi.org/10.3991/ijoe.v20i15.52857
Nivel de acceso:acceso abierto
Materia:Predictive model
Cardiorespiratory capacity
Machine learning
Anthropometric data
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_faa32d3dbea2ec909164f1e51c121850
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14643
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
title Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
spellingShingle Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
Ovalle, Christian
Predictive model
Cardiorespiratory capacity
Machine learning
Anthropometric data
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
title_full Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
title_fullStr Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
title_full_unstemmed Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
title_sort Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
author Ovalle, Christian
author_facet Ovalle, Christian
Sánchez Puche, Everardo
Ortiz Gomez, Genesis Andrea
Cornejo Vega, Jairo Samir
author_role author
author2 Sánchez Puche, Everardo
Ortiz Gomez, Genesis Andrea
Cornejo Vega, Jairo Samir
author2_role author
author
author
dc.contributor.author.fl_str_mv Ovalle, Christian
Sánchez Puche, Everardo
Ortiz Gomez, Genesis Andrea
Cornejo Vega, Jairo Samir
dc.subject.es_PE.fl_str_mv Predictive model
Cardiorespiratory capacity
Machine learning
Anthropometric data
topic Predictive model
Cardiorespiratory capacity
Machine learning
Anthropometric data
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description In the current educational context, physical education and student sports development face challenges marked by continuous technological evolution. This study proposes a predictive model supported by machine learning and artificial intelligence (AI), establishing a connection between cardiorespiratory capacity (VO2max) and student anthropometric data. With a sample of 179 students aged 13 to 18, the model-building process included preparing and partitioning a dataset, training, and evaluation under the CRISP-DM methodology. A multiple linear regression model was applied, incorporating weight, age, height, sex, and body mass index (BMI) to analyze their relationship with the dependent variable (VO2max). Performance metrics revealed a significant correlation between anthropometric measurements and cardiorespiratory fitness (CRF), with a 24% improvement in training, although test accuracy was -0.8%. Including additional variables, such as sex and age, they have improved the predictive equations. However, the ability of the model to predict VO2max was limited, suggesting the complexity of the relationship between these factors. In a comprehensive evaluation, five linear regression models achieved a correlation accuracy of 22% with the complete data set.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-14T15:20:44Z
dc.date.available.none.fl_str_mv 2025-11-14T15:20:44Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2626-8493
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14643
dc.identifier.journal.es_PE.fl_str_mv International Journal of Online and Biomedical Engineering
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3991/ijoe.v20i15.52857
identifier_str_mv 2626-8493
International Journal of Online and Biomedical Engineering
url https://hdl.handle.net/20.500.12867/14643
https://doi.org/10.3991/ijoe.v20i15.52857
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Federation of Engineering Education Societies (IFEES)
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/99eae4fc-1718-4201-bf1c-89b53e35cb22/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/672ebac0-1e73-46ea-bc23-9182039b3047/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/e89213b2-d1fa-450c-8a79-66f27e37242e/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/f0287b3c-13a8-4a2f-a711-78ebeec90672/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/321913d8-af31-4974-896d-c0c6e65462ea/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0c25de39-fe34-4e64-8af3-3e90ea27a7b7/download
bitstream.checksum.fl_str_mv 504492e651c9637b0ff337f927fedab0
8a4605be74aa9ea9d79846c1fba20a33
1483a020c5603db6f2a83518aba8b1c2
5f6995b3ba2d6fd2d6e2efe5856b3598
5d54fa40888591eb7828b0a4f3b036df
1dd86fcdb4a2c5c8b48057931c69e91c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231007747440640
spelling Ovalle, ChristianSánchez Puche, EverardoOrtiz Gomez, Genesis AndreaCornejo Vega, Jairo Samir2025-11-14T15:20:44Z2025-11-14T15:20:44Z20242626-8493https://hdl.handle.net/20.500.12867/14643International Journal of Online and Biomedical Engineeringhttps://doi.org/10.3991/ijoe.v20i15.52857In the current educational context, physical education and student sports development face challenges marked by continuous technological evolution. This study proposes a predictive model supported by machine learning and artificial intelligence (AI), establishing a connection between cardiorespiratory capacity (VO2max) and student anthropometric data. With a sample of 179 students aged 13 to 18, the model-building process included preparing and partitioning a dataset, training, and evaluation under the CRISP-DM methodology. A multiple linear regression model was applied, incorporating weight, age, height, sex, and body mass index (BMI) to analyze their relationship with the dependent variable (VO2max). Performance metrics revealed a significant correlation between anthropometric measurements and cardiorespiratory fitness (CRF), with a 24% improvement in training, although test accuracy was -0.8%. Including additional variables, such as sex and age, they have improved the predictive equations. However, the ability of the model to predict VO2max was limited, suggesting the complexity of the relationship between these factors. In a comprehensive evaluation, five linear regression models achieved a correlation accuracy of 22% with the complete data set.Campus Lima Centroapplication/pdfengInternational Federation of Engineering Education Societies (IFEES)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPPredictive modelCardiorespiratory capacityMachine learningAnthropometric datahttps://purl.org/pe-repo/ocde/ford#2.02.04Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private schoolinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALC.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdfC.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdfapplication/pdf1655725https://repositorio.utp.edu.pe/backend/api/core/bitstreams/99eae4fc-1718-4201-bf1c-89b53e35cb22/download504492e651c9637b0ff337f927fedab0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/672ebac0-1e73-46ea-bc23-9182039b3047/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTOvalle.C_Sanchez.E_Ortiz.G_Cornejo.J_Articulo_2024.pdf.txtOvalle.C_Sanchez.E_Ortiz.G_Cornejo.J_Articulo_2024.pdf.txtExtracted texttext/plain46812https://repositorio.utp.edu.pe/backend/api/core/bitstreams/e89213b2-d1fa-450c-8a79-66f27e37242e/download1483a020c5603db6f2a83518aba8b1c2MD53C.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdf.txtC.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdf.txtExtracted texttext/plain50344https://repositorio.utp.edu.pe/backend/api/core/bitstreams/f0287b3c-13a8-4a2f-a711-78ebeec90672/download5f6995b3ba2d6fd2d6e2efe5856b3598MD57THUMBNAILOvalle.C_Sanchez.E_Ortiz.G_Cornejo.J_Articulo_2024.pdf.jpgOvalle.C_Sanchez.E_Ortiz.G_Cornejo.J_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg20831https://repositorio.utp.edu.pe/backend/api/core/bitstreams/321913d8-af31-4974-896d-c0c6e65462ea/download5d54fa40888591eb7828b0a4f3b036dfMD54C.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdf.jpgC.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39163https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0c25de39-fe34-4e64-8af3-3e90ea27a7b7/download1dd86fcdb4a2c5c8b48057931c69e91cMD5820.500.12867/14643oai:repositorio.utp.edu.pe:20.500.12867/146432025-11-30 15:47:01.468https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.9152
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).