Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school
Descripción del Articulo
In the current educational context, physical education and student sports development face challenges marked by continuous technological evolution. This study proposes a predictive model supported by machine learning and artificial intelligence (AI), establishing a connection between cardiorespirato...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14643 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14643 https://doi.org/10.3991/ijoe.v20i15.52857 |
| Nivel de acceso: | acceso abierto |
| Materia: | Predictive model Cardiorespiratory capacity Machine learning Anthropometric data https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_faa32d3dbea2ec909164f1e51c121850 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14643 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school |
| title |
Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school |
| spellingShingle |
Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school Ovalle, Christian Predictive model Cardiorespiratory capacity Machine learning Anthropometric data https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school |
| title_full |
Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school |
| title_fullStr |
Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school |
| title_full_unstemmed |
Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school |
| title_sort |
Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private school |
| author |
Ovalle, Christian |
| author_facet |
Ovalle, Christian Sánchez Puche, Everardo Ortiz Gomez, Genesis Andrea Cornejo Vega, Jairo Samir |
| author_role |
author |
| author2 |
Sánchez Puche, Everardo Ortiz Gomez, Genesis Andrea Cornejo Vega, Jairo Samir |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Ovalle, Christian Sánchez Puche, Everardo Ortiz Gomez, Genesis Andrea Cornejo Vega, Jairo Samir |
| dc.subject.es_PE.fl_str_mv |
Predictive model Cardiorespiratory capacity Machine learning Anthropometric data |
| topic |
Predictive model Cardiorespiratory capacity Machine learning Anthropometric data https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
In the current educational context, physical education and student sports development face challenges marked by continuous technological evolution. This study proposes a predictive model supported by machine learning and artificial intelligence (AI), establishing a connection between cardiorespiratory capacity (VO2max) and student anthropometric data. With a sample of 179 students aged 13 to 18, the model-building process included preparing and partitioning a dataset, training, and evaluation under the CRISP-DM methodology. A multiple linear regression model was applied, incorporating weight, age, height, sex, and body mass index (BMI) to analyze their relationship with the dependent variable (VO2max). Performance metrics revealed a significant correlation between anthropometric measurements and cardiorespiratory fitness (CRF), with a 24% improvement in training, although test accuracy was -0.8%. Including additional variables, such as sex and age, they have improved the predictive equations. However, the ability of the model to predict VO2max was limited, suggesting the complexity of the relationship between these factors. In a comprehensive evaluation, five linear regression models achieved a correlation accuracy of 22% with the complete data set. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-14T15:20:44Z |
| dc.date.available.none.fl_str_mv |
2025-11-14T15:20:44Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2626-8493 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14643 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Online and Biomedical Engineering |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3991/ijoe.v20i15.52857 |
| identifier_str_mv |
2626-8493 International Journal of Online and Biomedical Engineering |
| url |
https://hdl.handle.net/20.500.12867/14643 https://doi.org/10.3991/ijoe.v20i15.52857 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
International Federation of Engineering Education Societies (IFEES) |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/99eae4fc-1718-4201-bf1c-89b53e35cb22/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/672ebac0-1e73-46ea-bc23-9182039b3047/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/e89213b2-d1fa-450c-8a79-66f27e37242e/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/f0287b3c-13a8-4a2f-a711-78ebeec90672/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/321913d8-af31-4974-896d-c0c6e65462ea/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0c25de39-fe34-4e64-8af3-3e90ea27a7b7/download |
| bitstream.checksum.fl_str_mv |
504492e651c9637b0ff337f927fedab0 8a4605be74aa9ea9d79846c1fba20a33 1483a020c5603db6f2a83518aba8b1c2 5f6995b3ba2d6fd2d6e2efe5856b3598 5d54fa40888591eb7828b0a4f3b036df 1dd86fcdb4a2c5c8b48057931c69e91c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231007747440640 |
| spelling |
Ovalle, ChristianSánchez Puche, EverardoOrtiz Gomez, Genesis AndreaCornejo Vega, Jairo Samir2025-11-14T15:20:44Z2025-11-14T15:20:44Z20242626-8493https://hdl.handle.net/20.500.12867/14643International Journal of Online and Biomedical Engineeringhttps://doi.org/10.3991/ijoe.v20i15.52857In the current educational context, physical education and student sports development face challenges marked by continuous technological evolution. This study proposes a predictive model supported by machine learning and artificial intelligence (AI), establishing a connection between cardiorespiratory capacity (VO2max) and student anthropometric data. With a sample of 179 students aged 13 to 18, the model-building process included preparing and partitioning a dataset, training, and evaluation under the CRISP-DM methodology. A multiple linear regression model was applied, incorporating weight, age, height, sex, and body mass index (BMI) to analyze their relationship with the dependent variable (VO2max). Performance metrics revealed a significant correlation between anthropometric measurements and cardiorespiratory fitness (CRF), with a 24% improvement in training, although test accuracy was -0.8%. Including additional variables, such as sex and age, they have improved the predictive equations. However, the ability of the model to predict VO2max was limited, suggesting the complexity of the relationship between these factors. In a comprehensive evaluation, five linear regression models achieved a correlation accuracy of 22% with the complete data set.Campus Lima Centroapplication/pdfengInternational Federation of Engineering Education Societies (IFEES)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPPredictive modelCardiorespiratory capacityMachine learningAnthropometric datahttps://purl.org/pe-repo/ocde/ford#2.02.04Predictive model for physical performance in athletics: Correlation between anthropometric data and cardiorespiratory capacity in students from a private schoolinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALC.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdfC.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdfapplication/pdf1655725https://repositorio.utp.edu.pe/backend/api/core/bitstreams/99eae4fc-1718-4201-bf1c-89b53e35cb22/download504492e651c9637b0ff337f927fedab0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/672ebac0-1e73-46ea-bc23-9182039b3047/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTOvalle.C_Sanchez.E_Ortiz.G_Cornejo.J_Articulo_2024.pdf.txtOvalle.C_Sanchez.E_Ortiz.G_Cornejo.J_Articulo_2024.pdf.txtExtracted texttext/plain46812https://repositorio.utp.edu.pe/backend/api/core/bitstreams/e89213b2-d1fa-450c-8a79-66f27e37242e/download1483a020c5603db6f2a83518aba8b1c2MD53C.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdf.txtC.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdf.txtExtracted texttext/plain50344https://repositorio.utp.edu.pe/backend/api/core/bitstreams/f0287b3c-13a8-4a2f-a711-78ebeec90672/download5f6995b3ba2d6fd2d6e2efe5856b3598MD57THUMBNAILOvalle.C_Sanchez.E_Ortiz.G_Cornejo.J_Articulo_2024.pdf.jpgOvalle.C_Sanchez.E_Ortiz.G_Cornejo.J_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg20831https://repositorio.utp.edu.pe/backend/api/core/bitstreams/321913d8-af31-4974-896d-c0c6e65462ea/download5d54fa40888591eb7828b0a4f3b036dfMD54C.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdf.jpgC.Ovalle_E.Sanchez_G.Ortiz_J.Cornejo_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39163https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0c25de39-fe34-4e64-8af3-3e90ea27a7b7/download1dd86fcdb4a2c5c8b48057931c69e91cMD5820.500.12867/14643oai:repositorio.utp.edu.pe:20.500.12867/146432025-11-30 15:47:01.468https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.9152 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).