Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
Descripción del Articulo
This work presents a sensor-based fluid pipeline leak detection system using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The implemented model consists of multiple flow sensors and pressure differentials, processed through a hybrid neural network and fuzzy logic hybrid system. The network comp...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14609 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14609 https://doi.org/10.14445/22315381/IJETT-V72I11P128 |
| Nivel de acceso: | acceso abierto |
| Materia: | Leak detection Pressure Neural network TensorFlow https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_ed5230a789d0abc075e09b6b9745a328 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14609 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference |
| title |
Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference |
| spellingShingle |
Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference Carbajal-López, Marco Leak detection Pressure Neural network TensorFlow https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference |
| title_full |
Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference |
| title_fullStr |
Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference |
| title_full_unstemmed |
Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference |
| title_sort |
Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference |
| author |
Carbajal-López, Marco |
| author_facet |
Carbajal-López, Marco Valdivia-Diaz, Anthony Briones-Zuñiga, Jose Sotomayor-Beltran, Carlos |
| author_role |
author |
| author2 |
Valdivia-Diaz, Anthony Briones-Zuñiga, Jose Sotomayor-Beltran, Carlos |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Carbajal-López, Marco Valdivia-Diaz, Anthony Briones-Zuñiga, Jose Sotomayor-Beltran, Carlos |
| dc.subject.es_PE.fl_str_mv |
Leak detection Pressure Neural network TensorFlow |
| topic |
Leak detection Pressure Neural network TensorFlow https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
This work presents a sensor-based fluid pipeline leak detection system using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The implemented model consists of multiple flow sensors and pressure differentials, processed through a hybrid neural network and fuzzy logic hybrid system. The network comprises five layers, with layer 1 being in charge of performing the membership function and layer 5 being part of the calculation of the exit rule. The system aims to detect and prevent fluid leakage in fluid passages by identifying changes in fluid flow and pressure differential. The results demonstrate that the ANFIS system can accurately detect leaks in the ducts, reaching 93.24 % of accuracy, indicating the percentage of correct predictions in the training set. Additionally, a validation set not part of the training was used for the model's generalization ability. This data set allowed us to measure patterns and characteristics of the model with new and previously unseen data. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-12T21:00:55Z |
| dc.date.available.none.fl_str_mv |
2025-11-12T21:00:55Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2231–5381 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14609 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Engineering Trends and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14445/22315381/IJETT-V72I11P128 |
| identifier_str_mv |
2231–5381 International Journal of Engineering Trends and Technology |
| url |
https://hdl.handle.net/20.500.12867/14609 https://doi.org/10.14445/22315381/IJETT-V72I11P128 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Seventh Sense Research Group |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/173c3ad9-18ae-49d0-9185-f767998d0551/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/13b4351a-a33a-41c0-b9f3-0fefb655433c/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/edf92fe2-473a-4389-9dc4-f9120ab4a5be/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3ca6b6c4-f73b-4231-8e42-5f9af37bdabf/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0d5f76e5-6d6a-4bde-a16e-7786896e8a5c/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c6b9df0b-533f-416a-ae5e-8097e2013a53/download |
| bitstream.checksum.fl_str_mv |
fb7b489131c6c3e7b76c30d9691320c3 8a4605be74aa9ea9d79846c1fba20a33 97d3d8d5e5c9b849be503a91d5ee431b e611a4cd4bd66f76b2cb8bb7e60ddf52 f214ba62a607ffb8e6222b891df0d078 16b6fedddc3b3c8a831b087318f79b3e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231639393894400 |
| spelling |
Carbajal-López, MarcoValdivia-Diaz, AnthonyBriones-Zuñiga, JoseSotomayor-Beltran, Carlos2025-11-12T21:00:55Z2025-11-12T21:00:55Z20242231–5381https://hdl.handle.net/20.500.12867/14609International Journal of Engineering Trends and Technologyhttps://doi.org/10.14445/22315381/IJETT-V72I11P128This work presents a sensor-based fluid pipeline leak detection system using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The implemented model consists of multiple flow sensors and pressure differentials, processed through a hybrid neural network and fuzzy logic hybrid system. The network comprises five layers, with layer 1 being in charge of performing the membership function and layer 5 being part of the calculation of the exit rule. The system aims to detect and prevent fluid leakage in fluid passages by identifying changes in fluid flow and pressure differential. The results demonstrate that the ANFIS system can accurately detect leaks in the ducts, reaching 93.24 % of accuracy, indicating the percentage of correct predictions in the training set. Additionally, a validation set not part of the training was used for the model's generalization ability. This data set allowed us to measure patterns and characteristics of the model with new and previously unseen data.Campus Lima Centroapplication/pdfengSeventh Sense Research Groupinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPLeak detectionPressureNeural networkTensorFlowhttps://purl.org/pe-repo/ocde/ford#2.02.04Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inferenceinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALM.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdfM.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdfapplication/pdf1307948https://repositorio.utp.edu.pe/backend/api/core/bitstreams/173c3ad9-18ae-49d0-9185-f767998d0551/downloadfb7b489131c6c3e7b76c30d9691320c3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/13b4351a-a33a-41c0-b9f3-0fefb655433c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCarbajal.M_Valdivia.A_Briones.J_Sotomayor.C_Articulo_2024.pdf.txtCarbajal.M_Valdivia.A_Briones.J_Sotomayor.C_Articulo_2024.pdf.txtExtracted texttext/plain53519https://repositorio.utp.edu.pe/backend/api/core/bitstreams/edf92fe2-473a-4389-9dc4-f9120ab4a5be/download97d3d8d5e5c9b849be503a91d5ee431bMD53M.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdf.txtM.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdf.txtExtracted texttext/plain60095https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3ca6b6c4-f73b-4231-8e42-5f9af37bdabf/downloade611a4cd4bd66f76b2cb8bb7e60ddf52MD57THUMBNAILCarbajal.M_Valdivia.A_Briones.J_Sotomayor.C_Articulo_2024.pdf.jpgCarbajal.M_Valdivia.A_Briones.J_Sotomayor.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg23390https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0d5f76e5-6d6a-4bde-a16e-7786896e8a5c/downloadf214ba62a607ffb8e6222b891df0d078MD54M.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdf.jpgM.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg54320https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c6b9df0b-533f-416a-ae5e-8097e2013a53/download16b6fedddc3b3c8a831b087318f79b3eMD5820.500.12867/14609oai:repositorio.utp.edu.pe:20.500.12867/146092025-11-30 17:16:48.098https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.9152 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).