Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference

Descripción del Articulo

This work presents a sensor-based fluid pipeline leak detection system using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The implemented model consists of multiple flow sensors and pressure differentials, processed through a hybrid neural network and fuzzy logic hybrid system. The network comp...

Descripción completa

Detalles Bibliográficos
Autores: Carbajal-López, Marco, Valdivia-Diaz, Anthony, Briones-Zuñiga, Jose, Sotomayor-Beltran, Carlos
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14609
Enlace del recurso:https://hdl.handle.net/20.500.12867/14609
https://doi.org/10.14445/22315381/IJETT-V72I11P128
Nivel de acceso:acceso abierto
Materia:Leak detection
Pressure
Neural network
TensorFlow
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_ed5230a789d0abc075e09b6b9745a328
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14609
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
title Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
spellingShingle Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
Carbajal-López, Marco
Leak detection
Pressure
Neural network
TensorFlow
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
title_full Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
title_fullStr Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
title_full_unstemmed Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
title_sort Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inference
author Carbajal-López, Marco
author_facet Carbajal-López, Marco
Valdivia-Diaz, Anthony
Briones-Zuñiga, Jose
Sotomayor-Beltran, Carlos
author_role author
author2 Valdivia-Diaz, Anthony
Briones-Zuñiga, Jose
Sotomayor-Beltran, Carlos
author2_role author
author
author
dc.contributor.author.fl_str_mv Carbajal-López, Marco
Valdivia-Diaz, Anthony
Briones-Zuñiga, Jose
Sotomayor-Beltran, Carlos
dc.subject.es_PE.fl_str_mv Leak detection
Pressure
Neural network
TensorFlow
topic Leak detection
Pressure
Neural network
TensorFlow
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description This work presents a sensor-based fluid pipeline leak detection system using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The implemented model consists of multiple flow sensors and pressure differentials, processed through a hybrid neural network and fuzzy logic hybrid system. The network comprises five layers, with layer 1 being in charge of performing the membership function and layer 5 being part of the calculation of the exit rule. The system aims to detect and prevent fluid leakage in fluid passages by identifying changes in fluid flow and pressure differential. The results demonstrate that the ANFIS system can accurately detect leaks in the ducts, reaching 93.24 % of accuracy, indicating the percentage of correct predictions in the training set. Additionally, a validation set not part of the training was used for the model's generalization ability. This data set allowed us to measure patterns and characteristics of the model with new and previously unseen data.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-12T21:00:55Z
dc.date.available.none.fl_str_mv 2025-11-12T21:00:55Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2231–5381
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14609
dc.identifier.journal.es_PE.fl_str_mv International Journal of Engineering Trends and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14445/22315381/IJETT-V72I11P128
identifier_str_mv 2231–5381
International Journal of Engineering Trends and Technology
url https://hdl.handle.net/20.500.12867/14609
https://doi.org/10.14445/22315381/IJETT-V72I11P128
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Seventh Sense Research Group
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/173c3ad9-18ae-49d0-9185-f767998d0551/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/13b4351a-a33a-41c0-b9f3-0fefb655433c/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/edf92fe2-473a-4389-9dc4-f9120ab4a5be/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3ca6b6c4-f73b-4231-8e42-5f9af37bdabf/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0d5f76e5-6d6a-4bde-a16e-7786896e8a5c/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c6b9df0b-533f-416a-ae5e-8097e2013a53/download
bitstream.checksum.fl_str_mv fb7b489131c6c3e7b76c30d9691320c3
8a4605be74aa9ea9d79846c1fba20a33
97d3d8d5e5c9b849be503a91d5ee431b
e611a4cd4bd66f76b2cb8bb7e60ddf52
f214ba62a607ffb8e6222b891df0d078
16b6fedddc3b3c8a831b087318f79b3e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231639393894400
spelling Carbajal-López, MarcoValdivia-Diaz, AnthonyBriones-Zuñiga, JoseSotomayor-Beltran, Carlos2025-11-12T21:00:55Z2025-11-12T21:00:55Z20242231–5381https://hdl.handle.net/20.500.12867/14609International Journal of Engineering Trends and Technologyhttps://doi.org/10.14445/22315381/IJETT-V72I11P128This work presents a sensor-based fluid pipeline leak detection system using an Adaptive Neuro-Fuzzy Inference System (ANFIS). The implemented model consists of multiple flow sensors and pressure differentials, processed through a hybrid neural network and fuzzy logic hybrid system. The network comprises five layers, with layer 1 being in charge of performing the membership function and layer 5 being part of the calculation of the exit rule. The system aims to detect and prevent fluid leakage in fluid passages by identifying changes in fluid flow and pressure differential. The results demonstrate that the ANFIS system can accurately detect leaks in the ducts, reaching 93.24 % of accuracy, indicating the percentage of correct predictions in the training set. Additionally, a validation set not part of the training was used for the model's generalization ability. This data set allowed us to measure patterns and characteristics of the model with new and previously unseen data.Campus Lima Centroapplication/pdfengSeventh Sense Research Groupinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPLeak detectionPressureNeural networkTensorFlowhttps://purl.org/pe-repo/ocde/ford#2.02.04Implementation of a multiple sensory system for the detection of fluid losses in ducts through adaptive neuro-fuzzy inferenceinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALM.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdfM.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdfapplication/pdf1307948https://repositorio.utp.edu.pe/backend/api/core/bitstreams/173c3ad9-18ae-49d0-9185-f767998d0551/downloadfb7b489131c6c3e7b76c30d9691320c3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/13b4351a-a33a-41c0-b9f3-0fefb655433c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCarbajal.M_Valdivia.A_Briones.J_Sotomayor.C_Articulo_2024.pdf.txtCarbajal.M_Valdivia.A_Briones.J_Sotomayor.C_Articulo_2024.pdf.txtExtracted texttext/plain53519https://repositorio.utp.edu.pe/backend/api/core/bitstreams/edf92fe2-473a-4389-9dc4-f9120ab4a5be/download97d3d8d5e5c9b849be503a91d5ee431bMD53M.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdf.txtM.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdf.txtExtracted texttext/plain60095https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3ca6b6c4-f73b-4231-8e42-5f9af37bdabf/downloade611a4cd4bd66f76b2cb8bb7e60ddf52MD57THUMBNAILCarbajal.M_Valdivia.A_Briones.J_Sotomayor.C_Articulo_2024.pdf.jpgCarbajal.M_Valdivia.A_Briones.J_Sotomayor.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg23390https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0d5f76e5-6d6a-4bde-a16e-7786896e8a5c/downloadf214ba62a607ffb8e6222b891df0d078MD54M.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdf.jpgM.Carbajal_A.Valdivia_J.Briones_C.Sotomayor_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg54320https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c6b9df0b-533f-416a-ae5e-8097e2013a53/download16b6fedddc3b3c8a831b087318f79b3eMD5820.500.12867/14609oai:repositorio.utp.edu.pe:20.500.12867/146092025-11-30 17:16:48.098https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.9152
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).