Epidemiological versus meteorological forecasts: best practice for linking models to policymaking

Descripción del Articulo

Weather forecasts, climate change projections, and epidemiological predictions all represent domains that are using forecast data to take early action for risk management. However, the methods and applications of the modeling efforts in each of these three fields have been developed and applied with...

Descripción completa

Detalles Bibliográficos
Autores: Bazo Zambrano, Juan Carlos, Coughlan de Perez, Erin, Stephens, Elisabeth, Van Aalst, Maarten, Fournier Tombs, Eleonore, Funk, Sebastian, Hess, Jeremy, Ranger, Nicola, Lowe, Rachel
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/4587
Enlace del recurso:https://hdl.handle.net/20.500.12867/4587
https://doi.org/10.1016/j.ijforecast.2021.08.003
Nivel de acceso:acceso abierto
Materia:Cambio climático
Climate effect
Planes de prevención
Prevention models
https://purl.org/pe-repo/ocde/ford#1.05.00
id UTPD_db007ef84138482a3959f2918b7dbd0c
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/4587
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Epidemiological versus meteorological forecasts: best practice for linking models to policymaking
title Epidemiological versus meteorological forecasts: best practice for linking models to policymaking
spellingShingle Epidemiological versus meteorological forecasts: best practice for linking models to policymaking
Bazo Zambrano, Juan Carlos
Cambio climático
Climate effect
Planes de prevención
Prevention models
https://purl.org/pe-repo/ocde/ford#1.05.00
title_short Epidemiological versus meteorological forecasts: best practice for linking models to policymaking
title_full Epidemiological versus meteorological forecasts: best practice for linking models to policymaking
title_fullStr Epidemiological versus meteorological forecasts: best practice for linking models to policymaking
title_full_unstemmed Epidemiological versus meteorological forecasts: best practice for linking models to policymaking
title_sort Epidemiological versus meteorological forecasts: best practice for linking models to policymaking
author Bazo Zambrano, Juan Carlos
author_facet Bazo Zambrano, Juan Carlos
Coughlan de Perez, Erin
Stephens, Elisabeth
Van Aalst, Maarten
Fournier Tombs, Eleonore
Funk, Sebastian
Hess, Jeremy
Ranger, Nicola
Lowe, Rachel
author_role author
author2 Coughlan de Perez, Erin
Stephens, Elisabeth
Van Aalst, Maarten
Fournier Tombs, Eleonore
Funk, Sebastian
Hess, Jeremy
Ranger, Nicola
Lowe, Rachel
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Bazo Zambrano, Juan Carlos
Coughlan de Perez, Erin
Stephens, Elisabeth
Van Aalst, Maarten
Fournier Tombs, Eleonore
Funk, Sebastian
Hess, Jeremy
Ranger, Nicola
Lowe, Rachel
dc.subject.es_PE.fl_str_mv Cambio climático
Climate effect
Planes de prevención
Prevention models
topic Cambio climático
Climate effect
Planes de prevención
Prevention models
https://purl.org/pe-repo/ocde/ford#1.05.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.00
description Weather forecasts, climate change projections, and epidemiological predictions all represent domains that are using forecast data to take early action for risk management. However, the methods and applications of the modeling efforts in each of these three fields have been developed and applied with little cross-fertilization. This perspective identifies best practices in each domain that can be adopted by the others, which can be used to inform each field separately as well as to facilitate a more effective combined use for the management of compound and evolving risks. In light of increased attention to predictive modeling during theCOVID-19 pandemic,we identify three major areas that all three of these modeling fields should prioritize for future investmentand improvement: (1) decision support, (2) conveying uncertainty, and (3) capturingvulnerability.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-12T23:45:59Z
dc.date.available.none.fl_str_mv 2021-11-12T23:45:59Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/4587
dc.identifier.journal.es_PE.fl_str_mv International Journal of Forecasting
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ijforecast.2021.08.003
url https://hdl.handle.net/20.500.12867/4587
https://doi.org/10.1016/j.ijforecast.2021.08.003
identifier_str_mv International Journal of Forecasting
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.publisher.country.es_PE.fl_str_mv NL
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/4587/1/E.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4587/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4587/5/E.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4587/6/E.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf.jpg
bitstream.checksum.fl_str_mv 9be63fda8386ac02e7a22226e5e52030
8a4605be74aa9ea9d79846c1fba20a33
b2f189addf43c0787b31b83f6feb98a3
f781a3b4b2402224f474929b1d111c87
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984905923002368
spelling Bazo Zambrano, Juan CarlosCoughlan de Perez, ErinStephens, ElisabethVan Aalst, MaartenFournier Tombs, EleonoreFunk, SebastianHess, JeremyRanger, NicolaLowe, Rachel2021-11-12T23:45:59Z2021-11-12T23:45:59Z2021https://hdl.handle.net/20.500.12867/4587International Journal of Forecastinghttps://doi.org/10.1016/j.ijforecast.2021.08.003Weather forecasts, climate change projections, and epidemiological predictions all represent domains that are using forecast data to take early action for risk management. However, the methods and applications of the modeling efforts in each of these three fields have been developed and applied with little cross-fertilization. This perspective identifies best practices in each domain that can be adopted by the others, which can be used to inform each field separately as well as to facilitate a more effective combined use for the management of compound and evolving risks. In light of increased attention to predictive modeling during theCOVID-19 pandemic,we identify three major areas that all three of these modeling fields should prioritize for future investmentand improvement: (1) decision support, (2) conveying uncertainty, and (3) capturingvulnerability.Campus Lima Centroapplication/pdfengElsevierNLinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPCambio climáticoClimate effectPlanes de prevenciónPrevention modelshttps://purl.org/pe-repo/ocde/ford#1.05.00Epidemiological versus meteorological forecasts: best practice for linking models to policymakinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALE.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdfE.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdfapplication/pdf478455http://repositorio.utp.edu.pe/bitstream/20.500.12867/4587/1/E.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf9be63fda8386ac02e7a22226e5e52030MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/4587/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTE.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf.txtE.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf.txtExtracted texttext/plain38694http://repositorio.utp.edu.pe/bitstream/20.500.12867/4587/5/E.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf.txtb2f189addf43c0787b31b83f6feb98a3MD55THUMBNAILE.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf.jpgE.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf.jpgGenerated Thumbnailimage/jpeg23131http://repositorio.utp.edu.pe/bitstream/20.500.12867/4587/6/E.Coughlan_E.Stephens_M.VanAalst_J.Bazo_E.Fourier_S.Funk_J.Hess_N.Ranger_R.Lowe_Articulo_IJF_eng_2021.pdf.jpgf781a3b4b2402224f474929b1d111c87MD5620.500.12867/4587oai:repositorio.utp.edu.pe:20.500.12867/45872021-11-18 03:49:04.832Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.987529
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).