Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru

Descripción del Articulo

Disaster planning has historically allocated minimal effort and finances toward advanced preparedness; however, evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the...

Descripción completa

Detalles Bibliográficos
Autor: Bazo Zambrano, Juan Carlos
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/4568
Enlace del recurso:https://hdl.handle.net/20.500.12867/4568
https://doi.org/10.5194/nhess-21-2215-2021
Nivel de acceso:acceso abierto
Materia:Prevention models
Floods
Prevention plans
Planes de prevención
Inundaciones
Perú
https://purl.org/pe-repo/ocde/ford#1.05.00
id UTPD_c9a6c6b52816abb8d080254cdc91be84
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/4568
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
title Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
spellingShingle Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
Bazo Zambrano, Juan Carlos
Prevention models
Floods
Prevention plans
Planes de prevención
Inundaciones
Perú
https://purl.org/pe-repo/ocde/ford#1.05.00
title_short Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
title_full Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
title_fullStr Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
title_full_unstemmed Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
title_sort Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
author Bazo Zambrano, Juan Carlos
author_facet Bazo Zambrano, Juan Carlos
author_role author
dc.contributor.author.fl_str_mv Bazo Zambrano, Juan Carlos
dc.subject.es_PE.fl_str_mv Prevention models
Floods
Prevention plans
Planes de prevención
Inundaciones
Perú
topic Prevention models
Floods
Prevention plans
Planes de prevención
Inundaciones
Perú
https://purl.org/pe-repo/ocde/ford#1.05.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.00
description Disaster planning has historically allocated minimal effort and finances toward advanced preparedness; however, evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least-squares combination) is also evaluated against current operational practices. The statistical prediction demonstrates superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in three out of four historical occasions, while both the statistical and multi-model predictions capture all four historical events when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. For the Piura River, the statistical model proves superior to all other approaches, correctly triggering 28 % more often in the hindcast period. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-10T14:52:51Z
dc.date.available.none.fl_str_mv 2021-11-10T14:52:51Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/4568
dc.identifier.journal.es_PE.fl_str_mv Natural Hazards and Earth System Sciences
dc.identifier.doi.none.fl_str_mv https://doi.org/10.5194/nhess-21-2215-2021
url https://hdl.handle.net/20.500.12867/4568
https://doi.org/10.5194/nhess-21-2215-2021
identifier_str_mv Natural Hazards and Earth System Sciences
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Natural Hazards and Earth System Sciences;vol. 21, n° 7 (2021)
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Copernicus Publications
dc.publisher.country.es_PE.fl_str_mv DE
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/1/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/5/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/6/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.jpg
bitstream.checksum.fl_str_mv 6650d989cc48cd2f962b92e0fca582cd
8a4605be74aa9ea9d79846c1fba20a33
1a27823031e38fa236a34bb38e51d06f
07efa980f72b427423659d8b762b301f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984905900982272
spelling Bazo Zambrano, Juan Carlos2021-11-10T14:52:51Z2021-11-10T14:52:51Z2021https://hdl.handle.net/20.500.12867/4568Natural Hazards and Earth System Scienceshttps://doi.org/10.5194/nhess-21-2215-2021Disaster planning has historically allocated minimal effort and finances toward advanced preparedness; however, evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least-squares combination) is also evaluated against current operational practices. The statistical prediction demonstrates superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in three out of four historical occasions, while both the statistical and multi-model predictions capture all four historical events when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. For the Piura River, the statistical model proves superior to all other approaches, correctly triggering 28 % more often in the hindcast period. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited.Campus Lima Centroapplication/pdfengCopernicus PublicationsDENatural Hazards and Earth System Sciences;vol. 21, n° 7 (2021)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPPrevention modelsFloodsPrevention plansPlanes de prevenciónInundacionesPerúhttps://purl.org/pe-repo/ocde/ford#1.05.00Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peruinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdfJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdfapplication/pdf3653071http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/1/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf6650d989cc48cd2f962b92e0fca582cdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.txtJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.txtExtracted texttext/plain78447http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/5/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.txt1a27823031e38fa236a34bb38e51d06fMD55THUMBNAILJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.jpgJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.jpgGenerated Thumbnailimage/jpeg22229http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/6/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.jpg07efa980f72b427423659d8b762b301fMD5620.500.12867/4568oai:repositorio.utp.edu.pe:20.500.12867/45682021-11-18 03:50:00.785Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.968331
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).