Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru
Descripción del Articulo
Disaster planning has historically allocated minimal effort and finances toward advanced preparedness; however, evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/4568 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/4568 https://doi.org/10.5194/nhess-21-2215-2021 |
| Nivel de acceso: | acceso abierto |
| Materia: | Prevention models Floods Prevention plans Planes de prevención Inundaciones Perú https://purl.org/pe-repo/ocde/ford#1.05.00 |
| id |
UTPD_c9a6c6b52816abb8d080254cdc91be84 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/4568 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru |
| title |
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru |
| spellingShingle |
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru Bazo Zambrano, Juan Carlos Prevention models Floods Prevention plans Planes de prevención Inundaciones Perú https://purl.org/pe-repo/ocde/ford#1.05.00 |
| title_short |
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru |
| title_full |
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru |
| title_fullStr |
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru |
| title_full_unstemmed |
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru |
| title_sort |
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peru |
| author |
Bazo Zambrano, Juan Carlos |
| author_facet |
Bazo Zambrano, Juan Carlos |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Bazo Zambrano, Juan Carlos |
| dc.subject.es_PE.fl_str_mv |
Prevention models Floods Prevention plans Planes de prevención Inundaciones Perú |
| topic |
Prevention models Floods Prevention plans Planes de prevención Inundaciones Perú https://purl.org/pe-repo/ocde/ford#1.05.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.00 |
| description |
Disaster planning has historically allocated minimal effort and finances toward advanced preparedness; however, evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least-squares combination) is also evaluated against current operational practices. The statistical prediction demonstrates superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in three out of four historical occasions, while both the statistical and multi-model predictions capture all four historical events when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. For the Piura River, the statistical model proves superior to all other approaches, correctly triggering 28 % more often in the hindcast period. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2021-11-10T14:52:51Z |
| dc.date.available.none.fl_str_mv |
2021-11-10T14:52:51Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/4568 |
| dc.identifier.journal.es_PE.fl_str_mv |
Natural Hazards and Earth System Sciences |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.5194/nhess-21-2215-2021 |
| url |
https://hdl.handle.net/20.500.12867/4568 https://doi.org/10.5194/nhess-21-2215-2021 |
| identifier_str_mv |
Natural Hazards and Earth System Sciences |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
Natural Hazards and Earth System Sciences;vol. 21, n° 7 (2021) |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Copernicus Publications |
| dc.publisher.country.es_PE.fl_str_mv |
DE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/1/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/5/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/6/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.jpg |
| bitstream.checksum.fl_str_mv |
6650d989cc48cd2f962b92e0fca582cd 8a4605be74aa9ea9d79846c1fba20a33 1a27823031e38fa236a34bb38e51d06f 07efa980f72b427423659d8b762b301f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984905900982272 |
| spelling |
Bazo Zambrano, Juan Carlos2021-11-10T14:52:51Z2021-11-10T14:52:51Z2021https://hdl.handle.net/20.500.12867/4568Natural Hazards and Earth System Scienceshttps://doi.org/10.5194/nhess-21-2215-2021Disaster planning has historically allocated minimal effort and finances toward advanced preparedness; however, evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least-squares combination) is also evaluated against current operational practices. The statistical prediction demonstrates superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in three out of four historical occasions, while both the statistical and multi-model predictions capture all four historical events when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. For the Piura River, the statistical model proves superior to all other approaches, correctly triggering 28 % more often in the hindcast period. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited.Campus Lima Centroapplication/pdfengCopernicus PublicationsDENatural Hazards and Earth System Sciences;vol. 21, n° 7 (2021)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPPrevention modelsFloodsPrevention plansPlanes de prevenciónInundacionesPerúhttps://purl.org/pe-repo/ocde/ford#1.05.00Leveraging multi-model season-ahead streamflow forecasts to trigger advanced flood preparedness in Peruinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdfJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdfapplication/pdf3653071http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/1/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf6650d989cc48cd2f962b92e0fca582cdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.txtJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.txtExtracted texttext/plain78447http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/5/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.txt1a27823031e38fa236a34bb38e51d06fMD55THUMBNAILJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.jpgJ.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.jpgGenerated Thumbnailimage/jpeg22229http://repositorio.utp.edu.pe/bitstream/20.500.12867/4568/6/J.Bazo_C.Keating_D.Lee_P.Block_Articulo_NHESS_eng_2021.pdf.jpg07efa980f72b427423659d8b762b301fMD5620.500.12867/4568oai:repositorio.utp.edu.pe:20.500.12867/45682021-11-18 03:50:00.785Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.968331 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).