Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years

Descripción del Articulo

One of the fatal diseases that occurs in women is breast cancer and is associated with late diagnosis and poor access to medical care according to the patient's needs, therefore neural networks play a relevant role in detection of breast cancer and aims to be a support to guarantee its accuracy...

Descripción completa

Detalles Bibliográficos
Autores: Aviles-Yataco, Walter, Meneses-Claudio, Brian
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/10886
Enlace del recurso:https://hdl.handle.net/20.500.12867/10886
https://doi.org/10.56294/sctconf202235
Nivel de acceso:acceso abierto
Materia:Breast Cancer
Diagnosis
Neural Network
Deep Learning
https://purl.org/pe-repo/ocde/ford#5.02.04
id UTPD_c1858a15791f1c508c7ef2597946d31f
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/10886
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years
dc.title.alternative.es_PE.fl_str_mv Redes neuronales aplicadas a la detección y diagnóstico del Cáncer de Mama, una revisión sistemática de la literatura científica de los últimos 5 años
title Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years
spellingShingle Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years
Aviles-Yataco, Walter
Breast Cancer
Diagnosis
Neural Network
Deep Learning
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years
title_full Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years
title_fullStr Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years
title_full_unstemmed Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years
title_sort Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 years
author Aviles-Yataco, Walter
author_facet Aviles-Yataco, Walter
Meneses-Claudio, Brian
author_role author
author2 Meneses-Claudio, Brian
author2_role author
dc.contributor.author.fl_str_mv Aviles-Yataco, Walter
Meneses-Claudio, Brian
dc.subject.es_PE.fl_str_mv Breast Cancer
Diagnosis
Neural Network
Deep Learning
topic Breast Cancer
Diagnosis
Neural Network
Deep Learning
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description One of the fatal diseases that occurs in women is breast cancer and is associated with late diagnosis and poor access to medical care according to the patient's needs, therefore neural networks play a relevant role in detection of breast cancer and aims to be a support to guarantee its accuracy and reliability in cancer results. Therefore, the aim of the present systematic review is to learn how neural networks help to improve accuracy in breast cancer diagnosis through image recognition. For this, the formula generated with the PICO methodology was used; Likewise, the first result was 203 investigations related to the topic and based on the established inclusion and exclusion criteria, 20 final free access scientific articles were selected from the Scopus database. In relation to the results, it was found that the use of neural networks in the diagnosis of breast cancer, especially convolutional neural networks (CNN), has proven to be a promising tool to improve the accuracy and early detection of the disease, reaching achieve an accuracy of 98 % in the recognition of clinical images, which means a big difference compared to traditional methods. On the other hand, although there are challenges such as the limited availability of high-quality data sets and bias in training data, it is suggested to investigate the development of methods that integrate multiple sources of information and the use of deep learning techniques.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2025-02-06T00:54:07Z
dc.date.available.none.fl_str_mv 2025-02-06T00:54:07Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2953-4860
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/10886
dc.identifier.journal.es_PE.fl_str_mv Salud, Ciencia y Tecnología – Serie de Conferencias
dc.identifier.doi.none.fl_str_mv https://doi.org/10.56294/sctconf202235
identifier_str_mv 2953-4860
Salud, Ciencia y Tecnología – Serie de Conferencias
url https://hdl.handle.net/20.500.12867/10886
https://doi.org/10.56294/sctconf202235
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Salud, Ciencia y Tecnología – Serie de Conferencias;Vol. 1 No. 35 (2022)
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Editorial Salud, Ciencia y Tecnología
dc.publisher.country.es_PE.fl_str_mv AR
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/600debf1-5369-4682-bcd1-cde6c2923360/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/883b2207-6db8-4216-9a36-61703bc6f7f2/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/044b5473-7dc1-46d4-826f-943e3171abea/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/22895a41-4c45-49ee-a423-3fb544bfff0d/download
bitstream.checksum.fl_str_mv c72f0c8d1cb386a9a4e96a34a9a8d8a9
8a4605be74aa9ea9d79846c1fba20a33
f17b861eb1039341a29442d34b925fa2
d38fa55e09fb77f574cf5d8db2088ea2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852865762734112768
spelling Aviles-Yataco, WalterMeneses-Claudio, Brian2025-02-06T00:54:07Z2025-02-06T00:54:07Z20222953-4860https://hdl.handle.net/20.500.12867/10886Salud, Ciencia y Tecnología – Serie de Conferenciashttps://doi.org/10.56294/sctconf202235One of the fatal diseases that occurs in women is breast cancer and is associated with late diagnosis and poor access to medical care according to the patient's needs, therefore neural networks play a relevant role in detection of breast cancer and aims to be a support to guarantee its accuracy and reliability in cancer results. Therefore, the aim of the present systematic review is to learn how neural networks help to improve accuracy in breast cancer diagnosis through image recognition. For this, the formula generated with the PICO methodology was used; Likewise, the first result was 203 investigations related to the topic and based on the established inclusion and exclusion criteria, 20 final free access scientific articles were selected from the Scopus database. In relation to the results, it was found that the use of neural networks in the diagnosis of breast cancer, especially convolutional neural networks (CNN), has proven to be a promising tool to improve the accuracy and early detection of the disease, reaching achieve an accuracy of 98 % in the recognition of clinical images, which means a big difference compared to traditional methods. On the other hand, although there are challenges such as the limited availability of high-quality data sets and bias in training data, it is suggested to investigate the development of methods that integrate multiple sources of information and the use of deep learning techniques.Campus Lima Norteapplication/pdfengEditorial Salud, Ciencia y TecnologíaARSalud, Ciencia y Tecnología – Serie de Conferencias;Vol. 1 No. 35 (2022)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPBreast CancerDiagnosisNeural NetworkDeep Learninghttps://purl.org/pe-repo/ocde/ford#5.02.04Neural networks applied to the detection and diagnosis of Breast Cancer, a systematic review of the scientific literature of the last 5 yearsRedes neuronales aplicadas a la detección y diagnóstico del Cáncer de Mama, una revisión sistemática de la literatura científica de los últimos 5 añosinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALW.Aviles_B.Meneses_Articulo_2022.pdfW.Aviles_B.Meneses_Articulo_2022.pdfapplication/pdf566633https://repositorio.utp.edu.pe/backend/api/core/bitstreams/600debf1-5369-4682-bcd1-cde6c2923360/downloadc72f0c8d1cb386a9a4e96a34a9a8d8a9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/883b2207-6db8-4216-9a36-61703bc6f7f2/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTW.Aviles_B.Meneses_Articulo_2022.pdf.txtW.Aviles_B.Meneses_Articulo_2022.pdf.txtExtracted texttext/plain60969https://repositorio.utp.edu.pe/backend/api/core/bitstreams/044b5473-7dc1-46d4-826f-943e3171abea/downloadf17b861eb1039341a29442d34b925fa2MD55THUMBNAILW.Aviles_B.Meneses_Articulo_2022.pdf.jpgW.Aviles_B.Meneses_Articulo_2022.pdf.jpgGenerated Thumbnailimage/jpeg50276https://repositorio.utp.edu.pe/backend/api/core/bitstreams/22895a41-4c45-49ee-a423-3fb544bfff0d/downloadd38fa55e09fb77f574cf5d8db2088ea2MD5620.500.12867/10886oai:repositorio.utp.edu.pe:20.500.12867/108862025-11-30 17:47:47.253http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.472619
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).