Satellite image classification for environmental change prediction using image processing and machine learning techniques

Descripción del Articulo

In this research satellite image classification for environmental change prediction using image processing and machine learning methods is used. As we know satellite images is one of the important sources of collecting information for all area and region of interest which is suitable for any difficu...

Descripción completa

Detalles Bibliográficos
Autores: Quiroz Chavil, Helga Kelly, Pérez Díaz, Nelly Aurora, Capuñay Uceda, Oscar Efraín, Niño-de-Guzman-Tito, Michael, Aguilar Astudillo, Eduardo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6007
Enlace del recurso:https://hdl.handle.net/20.500.12867/6007
http://doi.org/10.14704/nq.2022.20.9.NQ44142
Nivel de acceso:acceso abierto
Materia:Satellite image
Predictive modelling
Machine learning
Environmental change
Image processing
https://purl.org/pe-repo/ocde/ford#2.00.00
id UTPD_a78dbe95a10fc0a63e3566f3fc2c8a7a
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6007
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Satellite image classification for environmental change prediction using image processing and machine learning techniques
title Satellite image classification for environmental change prediction using image processing and machine learning techniques
spellingShingle Satellite image classification for environmental change prediction using image processing and machine learning techniques
Quiroz Chavil, Helga Kelly
Satellite image
Predictive modelling
Machine learning
Environmental change
Image processing
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Satellite image classification for environmental change prediction using image processing and machine learning techniques
title_full Satellite image classification for environmental change prediction using image processing and machine learning techniques
title_fullStr Satellite image classification for environmental change prediction using image processing and machine learning techniques
title_full_unstemmed Satellite image classification for environmental change prediction using image processing and machine learning techniques
title_sort Satellite image classification for environmental change prediction using image processing and machine learning techniques
author Quiroz Chavil, Helga Kelly
author_facet Quiroz Chavil, Helga Kelly
Pérez Díaz, Nelly Aurora
Capuñay Uceda, Oscar Efraín
Niño-de-Guzman-Tito, Michael
Aguilar Astudillo, Eduardo
author_role author
author2 Pérez Díaz, Nelly Aurora
Capuñay Uceda, Oscar Efraín
Niño-de-Guzman-Tito, Michael
Aguilar Astudillo, Eduardo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Quiroz Chavil, Helga Kelly
Pérez Díaz, Nelly Aurora
Capuñay Uceda, Oscar Efraín
Niño-de-Guzman-Tito, Michael
Aguilar Astudillo, Eduardo
dc.subject.es_PE.fl_str_mv Satellite image
Predictive modelling
Machine learning
Environmental change
Image processing
topic Satellite image
Predictive modelling
Machine learning
Environmental change
Image processing
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description In this research satellite image classification for environmental change prediction using image processing and machine learning methods is used. As we know satellite images is one of the important sources of collecting information for all area and region of interest which is suitable for any difficult situation around the world. The satellite image helps in collecting information on areas which is unpredictable and unreachable through digital cameras. In this research work, an advanced study on environmental change perdition has been examined using three classes’ ice land area, cropland area, and forest area. This research help in characterizing the type of satellite image classification for the particular three classes. The following stages have been considered are preprocessing, segmentation, and classification methods using K- Nearest Neighbor classifier. The present investigation results that db5 analysis works well in the classification of satellite image for environmental image prediction challenges with an accuracy of 94% using K- Nearest Neighbor classifier.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-04T23:49:19Z
dc.date.available.none.fl_str_mv 2022-10-04T23:49:19Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1303-5150
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6007
dc.identifier.journal.es_PE.fl_str_mv Neuro Quantology
dc.identifier.doi.none.fl_str_mv http://doi.org/10.14704/nq.2022.20.9.NQ44142
identifier_str_mv 1303-5150
Neuro Quantology
url https://hdl.handle.net/20.500.12867/6007
http://doi.org/10.14704/nq.2022.20.9.NQ44142
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Neuro Quantology;vol. 20, n° 9, pp. 1253-1263
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Neuro Quantology
dc.publisher.country.es_PE.fl_str_mv TR
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/1/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/3/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/4/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.jpg
bitstream.checksum.fl_str_mv cb02b8fa21b03ee84f75b4f6408496e9
8a4605be74aa9ea9d79846c1fba20a33
0fc6c482644a1074a6ab561f41b1789c
cd7975ed7289b2d1fb8bf1938fb74813
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984863584649216
spelling Quiroz Chavil, Helga KellyPérez Díaz, Nelly AuroraCapuñay Uceda, Oscar EfraínNiño-de-Guzman-Tito, MichaelAguilar Astudillo, Eduardo2022-10-04T23:49:19Z2022-10-04T23:49:19Z20221303-5150https://hdl.handle.net/20.500.12867/6007Neuro Quantologyhttp://doi.org/10.14704/nq.2022.20.9.NQ44142In this research satellite image classification for environmental change prediction using image processing and machine learning methods is used. As we know satellite images is one of the important sources of collecting information for all area and region of interest which is suitable for any difficult situation around the world. The satellite image helps in collecting information on areas which is unpredictable and unreachable through digital cameras. In this research work, an advanced study on environmental change perdition has been examined using three classes’ ice land area, cropland area, and forest area. This research help in characterizing the type of satellite image classification for the particular three classes. The following stages have been considered are preprocessing, segmentation, and classification methods using K- Nearest Neighbor classifier. The present investigation results that db5 analysis works well in the classification of satellite image for environmental image prediction challenges with an accuracy of 94% using K- Nearest Neighbor classifier.Campus Chiclayoapplication/pdfspaNeuro QuantologyTRNeuro Quantology;vol. 20, n° 9, pp. 1253-1263info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPSatellite imagePredictive modellingMachine learningEnvironmental changeImage processinghttps://purl.org/pe-repo/ocde/ford#2.00.00Satellite image classification for environmental change prediction using image processing and machine learning techniquesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALH.Quiroz_Neuroquantology_Articulo_spa_2022.pdfH.Quiroz_Neuroquantology_Articulo_spa_2022.pdfapplication/pdf2019523http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/1/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdfcb02b8fa21b03ee84f75b4f6408496e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTH.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.txtH.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.txtExtracted texttext/plain23472http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/3/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.txt0fc6c482644a1074a6ab561f41b1789cMD53THUMBNAILH.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.jpgH.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.jpgGenerated Thumbnailimage/jpeg22502http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/4/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.jpgcd7975ed7289b2d1fb8bf1938fb74813MD5420.500.12867/6007oai:repositorio.utp.edu.pe:20.500.12867/60072022-10-04 20:02:58.202Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.924177
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).