Satellite image classification for environmental change prediction using image processing and machine learning techniques
Descripción del Articulo
In this research satellite image classification for environmental change prediction using image processing and machine learning methods is used. As we know satellite images is one of the important sources of collecting information for all area and region of interest which is suitable for any difficu...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/6007 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/6007 http://doi.org/10.14704/nq.2022.20.9.NQ44142 |
| Nivel de acceso: | acceso abierto |
| Materia: | Satellite image Predictive modelling Machine learning Environmental change Image processing https://purl.org/pe-repo/ocde/ford#2.00.00 |
| id |
UTPD_a78dbe95a10fc0a63e3566f3fc2c8a7a |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/6007 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Satellite image classification for environmental change prediction using image processing and machine learning techniques |
| title |
Satellite image classification for environmental change prediction using image processing and machine learning techniques |
| spellingShingle |
Satellite image classification for environmental change prediction using image processing and machine learning techniques Quiroz Chavil, Helga Kelly Satellite image Predictive modelling Machine learning Environmental change Image processing https://purl.org/pe-repo/ocde/ford#2.00.00 |
| title_short |
Satellite image classification for environmental change prediction using image processing and machine learning techniques |
| title_full |
Satellite image classification for environmental change prediction using image processing and machine learning techniques |
| title_fullStr |
Satellite image classification for environmental change prediction using image processing and machine learning techniques |
| title_full_unstemmed |
Satellite image classification for environmental change prediction using image processing and machine learning techniques |
| title_sort |
Satellite image classification for environmental change prediction using image processing and machine learning techniques |
| author |
Quiroz Chavil, Helga Kelly |
| author_facet |
Quiroz Chavil, Helga Kelly Pérez Díaz, Nelly Aurora Capuñay Uceda, Oscar Efraín Niño-de-Guzman-Tito, Michael Aguilar Astudillo, Eduardo |
| author_role |
author |
| author2 |
Pérez Díaz, Nelly Aurora Capuñay Uceda, Oscar Efraín Niño-de-Guzman-Tito, Michael Aguilar Astudillo, Eduardo |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Quiroz Chavil, Helga Kelly Pérez Díaz, Nelly Aurora Capuñay Uceda, Oscar Efraín Niño-de-Guzman-Tito, Michael Aguilar Astudillo, Eduardo |
| dc.subject.es_PE.fl_str_mv |
Satellite image Predictive modelling Machine learning Environmental change Image processing |
| topic |
Satellite image Predictive modelling Machine learning Environmental change Image processing https://purl.org/pe-repo/ocde/ford#2.00.00 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.00.00 |
| description |
In this research satellite image classification for environmental change prediction using image processing and machine learning methods is used. As we know satellite images is one of the important sources of collecting information for all area and region of interest which is suitable for any difficult situation around the world. The satellite image helps in collecting information on areas which is unpredictable and unreachable through digital cameras. In this research work, an advanced study on environmental change perdition has been examined using three classes’ ice land area, cropland area, and forest area. This research help in characterizing the type of satellite image classification for the particular three classes. The following stages have been considered are preprocessing, segmentation, and classification methods using K- Nearest Neighbor classifier. The present investigation results that db5 analysis works well in the classification of satellite image for environmental image prediction challenges with an accuracy of 94% using K- Nearest Neighbor classifier. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-10-04T23:49:19Z |
| dc.date.available.none.fl_str_mv |
2022-10-04T23:49:19Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1303-5150 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/6007 |
| dc.identifier.journal.es_PE.fl_str_mv |
Neuro Quantology |
| dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.14704/nq.2022.20.9.NQ44142 |
| identifier_str_mv |
1303-5150 Neuro Quantology |
| url |
https://hdl.handle.net/20.500.12867/6007 http://doi.org/10.14704/nq.2022.20.9.NQ44142 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartofseries.none.fl_str_mv |
Neuro Quantology;vol. 20, n° 9, pp. 1253-1263 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Neuro Quantology |
| dc.publisher.country.es_PE.fl_str_mv |
TR |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/1/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/3/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/4/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.jpg |
| bitstream.checksum.fl_str_mv |
cb02b8fa21b03ee84f75b4f6408496e9 8a4605be74aa9ea9d79846c1fba20a33 0fc6c482644a1074a6ab561f41b1789c cd7975ed7289b2d1fb8bf1938fb74813 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984863584649216 |
| spelling |
Quiroz Chavil, Helga KellyPérez Díaz, Nelly AuroraCapuñay Uceda, Oscar EfraínNiño-de-Guzman-Tito, MichaelAguilar Astudillo, Eduardo2022-10-04T23:49:19Z2022-10-04T23:49:19Z20221303-5150https://hdl.handle.net/20.500.12867/6007Neuro Quantologyhttp://doi.org/10.14704/nq.2022.20.9.NQ44142In this research satellite image classification for environmental change prediction using image processing and machine learning methods is used. As we know satellite images is one of the important sources of collecting information for all area and region of interest which is suitable for any difficult situation around the world. The satellite image helps in collecting information on areas which is unpredictable and unreachable through digital cameras. In this research work, an advanced study on environmental change perdition has been examined using three classes’ ice land area, cropland area, and forest area. This research help in characterizing the type of satellite image classification for the particular three classes. The following stages have been considered are preprocessing, segmentation, and classification methods using K- Nearest Neighbor classifier. The present investigation results that db5 analysis works well in the classification of satellite image for environmental image prediction challenges with an accuracy of 94% using K- Nearest Neighbor classifier.Campus Chiclayoapplication/pdfspaNeuro QuantologyTRNeuro Quantology;vol. 20, n° 9, pp. 1253-1263info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPSatellite imagePredictive modellingMachine learningEnvironmental changeImage processinghttps://purl.org/pe-repo/ocde/ford#2.00.00Satellite image classification for environmental change prediction using image processing and machine learning techniquesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALH.Quiroz_Neuroquantology_Articulo_spa_2022.pdfH.Quiroz_Neuroquantology_Articulo_spa_2022.pdfapplication/pdf2019523http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/1/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdfcb02b8fa21b03ee84f75b4f6408496e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTH.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.txtH.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.txtExtracted texttext/plain23472http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/3/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.txt0fc6c482644a1074a6ab561f41b1789cMD53THUMBNAILH.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.jpgH.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.jpgGenerated Thumbnailimage/jpeg22502http://repositorio.utp.edu.pe/bitstream/20.500.12867/6007/4/H.Quiroz_Neuroquantology_Articulo_spa_2022.pdf.jpgcd7975ed7289b2d1fb8bf1938fb74813MD5420.500.12867/6007oai:repositorio.utp.edu.pe:20.500.12867/60072022-10-04 20:02:58.202Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.924177 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).