Optimizing forecast-based actions for extreme rainfall events

Descripción del Articulo

The last decade has seen a major innovation within disaster risk management through the emergence of standardized forecast-based action and financing protocols. Given sufficient lead time and forecast skill, a portion of relief funds may be shifted from disaster recovery to disaster preparedness, re...

Descripción completa

Detalles Bibliográficos
Autores: Lala, Jonathan, Bazo Zambrano, Juan Carlos, Anand, Vaibhav, Block, Paul
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/4555
Enlace del recurso:https://hdl.handle.net/20.500.12867/4555
https://doi.org/10.1016/j.crm.2021.100374
Nivel de acceso:acceso abierto
Materia:Disaster management
Disaster prevention
Floods
https://purl.org/pe-repo/ocde/ford#1.05.10
id UTPD_8fbaf7e843eb04d77468500c70665e19
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/4555
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Optimizing forecast-based actions for extreme rainfall events
title Optimizing forecast-based actions for extreme rainfall events
spellingShingle Optimizing forecast-based actions for extreme rainfall events
Lala, Jonathan
Disaster management
Disaster prevention
Floods
https://purl.org/pe-repo/ocde/ford#1.05.10
title_short Optimizing forecast-based actions for extreme rainfall events
title_full Optimizing forecast-based actions for extreme rainfall events
title_fullStr Optimizing forecast-based actions for extreme rainfall events
title_full_unstemmed Optimizing forecast-based actions for extreme rainfall events
title_sort Optimizing forecast-based actions for extreme rainfall events
author Lala, Jonathan
author_facet Lala, Jonathan
Bazo Zambrano, Juan Carlos
Anand, Vaibhav
Block, Paul
author_role author
author2 Bazo Zambrano, Juan Carlos
Anand, Vaibhav
Block, Paul
author2_role author
author
author
dc.contributor.author.fl_str_mv Lala, Jonathan
Bazo Zambrano, Juan Carlos
Anand, Vaibhav
Block, Paul
dc.subject.es_PE.fl_str_mv Disaster management
Disaster prevention
Floods
topic Disaster management
Disaster prevention
Floods
https://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.10
description The last decade has seen a major innovation within disaster risk management through the emergence of standardized forecast-based action and financing protocols. Given sufficient lead time and forecast skill, a portion of relief funds may be shifted from disaster recovery to disaster preparedness, reducing losses in lives and property. While short-term early warnings systems are commonplace, forecasts at the monthly or seasonal scale are relatively underused, despite their potential value. Incorporating both, numerous relief organizations have developed operational early action protocols for natural hazards. These plans may have well-defined forecasts, trigger criteria, and identification of early actions ranging from weeks to months prior to a predicted disaster, but many have not been explicitly optimized to maximize financial or utilitarian returns. This study investigates the effect of different forecast methodologies, performance metrics, and levels of risk aversion on optimal decision-making through a sensitivity analysis of an early action protocol, using a case study in coastal Peru. Results suggest that the relative benefit of actions at different lead times plays the largest role in determining optimal decisions, with forecast meth-odology and risk aversion playing a lesser role. The optimization framework is designed to be applicable even in the absence of post-disaster monitoring and evaluation, supporting the pro-liferation of adaptive early action protocols more broadly. Plain language summary: Forecast-based early actions for disasters are increasingly common, and some relief organizations have adopted standardized early action protocols to identify and respond to disasters. Because they are often new and untested, these protocols may not be optimized to provide the maximum return on investment. This paper presents a way to test different types of decisions in an early action protocol, including forecast type, willingness to take action, and ways in which to calculate benefits. We find that early preparation—that is, seasons or months in advance—is valuable, and that the value of preparation at different times before the disaster is more important than the accuracy of the forecasts or our willingness to take risks.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-04T21:25:14Z
dc.date.available.none.fl_str_mv 2021-11-04T21:25:14Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2212-0963
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/4555
dc.identifier.journal.es_PE.fl_str_mv Climate Risk Management
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.crm.2021.100374
identifier_str_mv 2212-0963
Climate Risk Management
url https://hdl.handle.net/20.500.12867/4555
https://doi.org/10.1016/j.crm.2021.100374
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Climate Risk Management;vol. 34, n° 100374 (2021)
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.publisher.country.es_PE.fl_str_mv NL
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/4555/1/JLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4555/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4555/5/JLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4555/6/JLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf.jpg
bitstream.checksum.fl_str_mv ccff786ef878906b41fb9eb0842de5a7
8a4605be74aa9ea9d79846c1fba20a33
c7f52ad51a8fef62fdaa75ed691db4e5
aca2d32029e05174e0bffd9074720067
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984927392595968
spelling Lala, JonathanBazo Zambrano, Juan CarlosAnand, VaibhavBlock, Paul2021-11-04T21:25:14Z2021-11-04T21:25:14Z20212212-0963https://hdl.handle.net/20.500.12867/4555Climate Risk Managementhttps://doi.org/10.1016/j.crm.2021.100374The last decade has seen a major innovation within disaster risk management through the emergence of standardized forecast-based action and financing protocols. Given sufficient lead time and forecast skill, a portion of relief funds may be shifted from disaster recovery to disaster preparedness, reducing losses in lives and property. While short-term early warnings systems are commonplace, forecasts at the monthly or seasonal scale are relatively underused, despite their potential value. Incorporating both, numerous relief organizations have developed operational early action protocols for natural hazards. These plans may have well-defined forecasts, trigger criteria, and identification of early actions ranging from weeks to months prior to a predicted disaster, but many have not been explicitly optimized to maximize financial or utilitarian returns. This study investigates the effect of different forecast methodologies, performance metrics, and levels of risk aversion on optimal decision-making through a sensitivity analysis of an early action protocol, using a case study in coastal Peru. Results suggest that the relative benefit of actions at different lead times plays the largest role in determining optimal decisions, with forecast meth-odology and risk aversion playing a lesser role. The optimization framework is designed to be applicable even in the absence of post-disaster monitoring and evaluation, supporting the pro-liferation of adaptive early action protocols more broadly. Plain language summary: Forecast-based early actions for disasters are increasingly common, and some relief organizations have adopted standardized early action protocols to identify and respond to disasters. Because they are often new and untested, these protocols may not be optimized to provide the maximum return on investment. This paper presents a way to test different types of decisions in an early action protocol, including forecast type, willingness to take action, and ways in which to calculate benefits. We find that early preparation—that is, seasons or months in advance—is valuable, and that the value of preparation at different times before the disaster is more important than the accuracy of the forecasts or our willingness to take risks.Campus Lima Centroapplication/pdfengElsevierNLClimate Risk Management;vol. 34, n° 100374 (2021)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPDisaster managementDisaster preventionFloodshttps://purl.org/pe-repo/ocde/ford#1.05.10Optimizing forecast-based actions for extreme rainfall eventsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdfJLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdfapplication/pdf6223166http://repositorio.utp.edu.pe/bitstream/20.500.12867/4555/1/JLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdfccff786ef878906b41fb9eb0842de5a7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/4555/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf.txtJLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf.txtExtracted texttext/plain58813http://repositorio.utp.edu.pe/bitstream/20.500.12867/4555/5/JLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf.txtc7f52ad51a8fef62fdaa75ed691db4e5MD55THUMBNAILJLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf.jpgJLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf.jpgGenerated Thumbnailimage/jpeg18069http://repositorio.utp.edu.pe/bitstream/20.500.12867/4555/6/JLala_J.Bazo_V.Anand_P.Block_Articulo_Climate_Risk_Management_eng_2021.pdf.jpgaca2d32029e05174e0bffd9074720067MD5620.500.12867/4555oai:repositorio.utp.edu.pe:20.500.12867/45552021-11-18 03:48:11.476Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949927
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).