Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
Descripción del Articulo
University students experiment different factors that bring as a consequence the abandonment of his professional career. In Perú, the dropout rate becomes a critical point of attention due to its increase since COVID-19. Despite the fact that the institutions join forces to improve student retention...
| Autores: | , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14392 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14392 https://doi.org/10.18687/LACCEI2024.1.1.1316 |
| Nivel de acceso: | acceso abierto |
| Materia: | University dropout Desertion Machine learning Predictive model https://purl.org/pe-repo/ocde/ford#2.11.04 |
| id |
UTPD_853045d39040ec8c53ec52d09760f7ba |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14392 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study |
| title |
Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study |
| spellingShingle |
Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study Aguilar Lopez, Kristelly Magdalena University dropout Desertion Machine learning Predictive model https://purl.org/pe-repo/ocde/ford#2.11.04 |
| title_short |
Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study |
| title_full |
Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study |
| title_fullStr |
Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study |
| title_full_unstemmed |
Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study |
| title_sort |
Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study |
| author |
Aguilar Lopez, Kristelly Magdalena |
| author_facet |
Aguilar Lopez, Kristelly Magdalena Carbajal Ortega, Yuri Martinez Hilario, Daril Giovanni Rodriguez, Sol |
| author_role |
author |
| author2 |
Carbajal Ortega, Yuri Martinez Hilario, Daril Giovanni Rodriguez, Sol |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Aguilar Lopez, Kristelly Magdalena Carbajal Ortega, Yuri Martinez Hilario, Daril Giovanni Rodriguez, Sol |
| dc.subject.es_PE.fl_str_mv |
University dropout Desertion Machine learning Predictive model |
| topic |
University dropout Desertion Machine learning Predictive model https://purl.org/pe-repo/ocde/ford#2.11.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| description |
University students experiment different factors that bring as a consequence the abandonment of his professional career. In Perú, the dropout rate becomes a critical point of attention due to its increase since COVID-19. Despite the fact that the institutions join forces to improve student retention, these seem to be insufficient because of the root causes of the problem are not analyzed. Hence, this study aims to analyze the main causes associated to student dropout of a population of students from the academic period 2022-2 of a private university. For this purpose, three predictive models (random forest, logistic regression and decision tree) were designed to identify the main risks associated to abandonment of students. The predictive models were designed with the automatic learning method (Machine Learning) through Google Collab programming, obtaining a comparison of predicted dropout versus real dropouts, performing a model accuracy of 93% for the logistic regression model. Weighting the main risks identified, different retention strategies can be proposed to reduce the desertion rate. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-05T15:55:57Z |
| dc.date.available.none.fl_str_mv |
2025-11-05T15:55:57Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2414-6390 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14392 |
| dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18687/LACCEI2024.1.1.1316 |
| identifier_str_mv |
2414-6390 Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| url |
https://hdl.handle.net/20.500.12867/14392 https://doi.org/10.18687/LACCEI2024.1.1.1316 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3de7a41b-8b27-447d-b8a2-79d005ee3c5d/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/41956a37-fdb2-4103-9838-5163ff26a7dc/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/03549e59-8fce-49b8-96eb-083ef82b36f8/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/79599c95-e4ee-4c91-80a5-decdfd382840/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a207c5fc-d12b-4179-b147-395680bece74/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c778f5a4-0729-43e6-9093-69096597ec0f/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 753c057839339d4bf9360b8142d0097d 20f12669f858ca8ae9c115dd944e5e95 51ba32506d58ff920f42e164f637f2b9 ac66bc16c6f3bbacac1110943f078419 435f50640c9ff51450935a512df819a5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231334543491072 |
| spelling |
Aguilar Lopez, Kristelly MagdalenaCarbajal Ortega, YuriMartinez Hilario, Daril GiovanniRodriguez, Sol2025-11-05T15:55:57Z2025-11-05T15:55:57Z20242414-6390https://hdl.handle.net/20.500.12867/14392Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1316University students experiment different factors that bring as a consequence the abandonment of his professional career. In Perú, the dropout rate becomes a critical point of attention due to its increase since COVID-19. Despite the fact that the institutions join forces to improve student retention, these seem to be insufficient because of the root causes of the problem are not analyzed. Hence, this study aims to analyze the main causes associated to student dropout of a population of students from the academic period 2022-2 of a private university. For this purpose, three predictive models (random forest, logistic regression and decision tree) were designed to identify the main risks associated to abandonment of students. The predictive models were designed with the automatic learning method (Machine Learning) through Google Collab programming, obtaining a comparison of predicted dropout versus real dropouts, performing a model accuracy of 93% for the logistic regression model. Weighting the main risks identified, different retention strategies can be proposed to reduce the desertion rate.Campus Lima Norteapplication/pdfengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPUniversity dropoutDesertionMachine learningPredictive modelhttps://purl.org/pe-repo/ocde/ford#2.11.04Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case studyinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3de7a41b-8b27-447d-b8a2-79d005ee3c5d/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTAguilar.K_Carbajal.Y_Martinez.D_Rodriguez.S_Conference_Paper_2024.pdf.txtAguilar.K_Carbajal.Y_Martinez.D_Rodriguez.S_Conference_Paper_2024.pdf.txtExtracted texttext/plain49754https://repositorio.utp.edu.pe/backend/api/core/bitstreams/41956a37-fdb2-4103-9838-5163ff26a7dc/download753c057839339d4bf9360b8142d0097dMD53K.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdf.txtK.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdf.txtExtracted texttext/plain51017https://repositorio.utp.edu.pe/backend/api/core/bitstreams/03549e59-8fce-49b8-96eb-083ef82b36f8/download20f12669f858ca8ae9c115dd944e5e95MD58THUMBNAILAguilar.K_Carbajal.Y_Martinez.D_Rodriguez.S_Conference_Paper_2024.pdf.jpgAguilar.K_Carbajal.Y_Martinez.D_Rodriguez.S_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg26710https://repositorio.utp.edu.pe/backend/api/core/bitstreams/79599c95-e4ee-4c91-80a5-decdfd382840/download51ba32506d58ff920f42e164f637f2b9MD54K.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdf.jpgK.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg60161https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a207c5fc-d12b-4179-b147-395680bece74/downloadac66bc16c6f3bbacac1110943f078419MD59ORIGINALK.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdfK.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdfapplication/pdf1231362https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c778f5a4-0729-43e6-9093-69096597ec0f/download435f50640c9ff51450935a512df819a5MD5520.500.12867/14392oai:repositorio.utp.edu.pe:20.500.12867/143922025-11-30 16:27:01.009https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.934021 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).