Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study

Descripción del Articulo

University students experiment different factors that bring as a consequence the abandonment of his professional career. In Perú, the dropout rate becomes a critical point of attention due to its increase since COVID-19. Despite the fact that the institutions join forces to improve student retention...

Descripción completa

Detalles Bibliográficos
Autores: Aguilar Lopez, Kristelly Magdalena, Carbajal Ortega, Yuri, Martinez Hilario, Daril Giovanni, Rodriguez, Sol
Formato: objeto de conferencia
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14392
Enlace del recurso:https://hdl.handle.net/20.500.12867/14392
https://doi.org/10.18687/LACCEI2024.1.1.1316
Nivel de acceso:acceso abierto
Materia:University dropout
Desertion
Machine learning
Predictive model
https://purl.org/pe-repo/ocde/ford#2.11.04
id UTPD_853045d39040ec8c53ec52d09760f7ba
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14392
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
title Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
spellingShingle Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
Aguilar Lopez, Kristelly Magdalena
University dropout
Desertion
Machine learning
Predictive model
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
title_full Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
title_fullStr Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
title_full_unstemmed Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
title_sort Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case study
author Aguilar Lopez, Kristelly Magdalena
author_facet Aguilar Lopez, Kristelly Magdalena
Carbajal Ortega, Yuri
Martinez Hilario, Daril Giovanni
Rodriguez, Sol
author_role author
author2 Carbajal Ortega, Yuri
Martinez Hilario, Daril Giovanni
Rodriguez, Sol
author2_role author
author
author
dc.contributor.author.fl_str_mv Aguilar Lopez, Kristelly Magdalena
Carbajal Ortega, Yuri
Martinez Hilario, Daril Giovanni
Rodriguez, Sol
dc.subject.es_PE.fl_str_mv University dropout
Desertion
Machine learning
Predictive model
topic University dropout
Desertion
Machine learning
Predictive model
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description University students experiment different factors that bring as a consequence the abandonment of his professional career. In Perú, the dropout rate becomes a critical point of attention due to its increase since COVID-19. Despite the fact that the institutions join forces to improve student retention, these seem to be insufficient because of the root causes of the problem are not analyzed. Hence, this study aims to analyze the main causes associated to student dropout of a population of students from the academic period 2022-2 of a private university. For this purpose, three predictive models (random forest, logistic regression and decision tree) were designed to identify the main risks associated to abandonment of students. The predictive models were designed with the automatic learning method (Machine Learning) through Google Collab programming, obtaining a comparison of predicted dropout versus real dropouts, performing a model accuracy of 93% for the logistic regression model. Weighting the main risks identified, different retention strategies can be proposed to reduce the desertion rate.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-05T15:55:57Z
dc.date.available.none.fl_str_mv 2025-11-05T15:55:57Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format conferenceObject
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2414-6390
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14392
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18687/LACCEI2024.1.1.1316
identifier_str_mv 2414-6390
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
url https://hdl.handle.net/20.500.12867/14392
https://doi.org/10.18687/LACCEI2024.1.1.1316
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3de7a41b-8b27-447d-b8a2-79d005ee3c5d/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/41956a37-fdb2-4103-9838-5163ff26a7dc/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/03549e59-8fce-49b8-96eb-083ef82b36f8/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/79599c95-e4ee-4c91-80a5-decdfd382840/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a207c5fc-d12b-4179-b147-395680bece74/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c778f5a4-0729-43e6-9093-69096597ec0f/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
753c057839339d4bf9360b8142d0097d
20f12669f858ca8ae9c115dd944e5e95
51ba32506d58ff920f42e164f637f2b9
ac66bc16c6f3bbacac1110943f078419
435f50640c9ff51450935a512df819a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231334543491072
spelling Aguilar Lopez, Kristelly MagdalenaCarbajal Ortega, YuriMartinez Hilario, Daril GiovanniRodriguez, Sol2025-11-05T15:55:57Z2025-11-05T15:55:57Z20242414-6390https://hdl.handle.net/20.500.12867/14392Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1316University students experiment different factors that bring as a consequence the abandonment of his professional career. In Perú, the dropout rate becomes a critical point of attention due to its increase since COVID-19. Despite the fact that the institutions join forces to improve student retention, these seem to be insufficient because of the root causes of the problem are not analyzed. Hence, this study aims to analyze the main causes associated to student dropout of a population of students from the academic period 2022-2 of a private university. For this purpose, three predictive models (random forest, logistic regression and decision tree) were designed to identify the main risks associated to abandonment of students. The predictive models were designed with the automatic learning method (Machine Learning) through Google Collab programming, obtaining a comparison of predicted dropout versus real dropouts, performing a model accuracy of 93% for the logistic regression model. Weighting the main risks identified, different retention strategies can be proposed to reduce the desertion rate.Campus Lima Norteapplication/pdfengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPUniversity dropoutDesertionMachine learningPredictive modelhttps://purl.org/pe-repo/ocde/ford#2.11.04Predictive modeling based on machine learning strategies to forecast student dropout at a Peruvian university: A case studyinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3de7a41b-8b27-447d-b8a2-79d005ee3c5d/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTAguilar.K_Carbajal.Y_Martinez.D_Rodriguez.S_Conference_Paper_2024.pdf.txtAguilar.K_Carbajal.Y_Martinez.D_Rodriguez.S_Conference_Paper_2024.pdf.txtExtracted texttext/plain49754https://repositorio.utp.edu.pe/backend/api/core/bitstreams/41956a37-fdb2-4103-9838-5163ff26a7dc/download753c057839339d4bf9360b8142d0097dMD53K.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdf.txtK.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdf.txtExtracted texttext/plain51017https://repositorio.utp.edu.pe/backend/api/core/bitstreams/03549e59-8fce-49b8-96eb-083ef82b36f8/download20f12669f858ca8ae9c115dd944e5e95MD58THUMBNAILAguilar.K_Carbajal.Y_Martinez.D_Rodriguez.S_Conference_Paper_2024.pdf.jpgAguilar.K_Carbajal.Y_Martinez.D_Rodriguez.S_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg26710https://repositorio.utp.edu.pe/backend/api/core/bitstreams/79599c95-e4ee-4c91-80a5-decdfd382840/download51ba32506d58ff920f42e164f637f2b9MD54K.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdf.jpgK.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg60161https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a207c5fc-d12b-4179-b147-395680bece74/downloadac66bc16c6f3bbacac1110943f078419MD59ORIGINALK.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdfK.Aguilar_Y.Carbajal_D.Martinez_S.Rodriguez_Conference_Paper_2024.pdfapplication/pdf1231362https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c778f5a4-0729-43e6-9093-69096597ec0f/download435f50640c9ff51450935a512df819a5MD5520.500.12867/14392oai:repositorio.utp.edu.pe:20.500.12867/143922025-11-30 16:27:01.009https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.934021
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).