Machine learning models to classify and predict depression in college students

Descripción del Articulo

Depression is an increasingly common mental health condition worldwide and is influenced by various factors such as anxiety, frustration, obesity, medical issues, etc. In severe cases, it can even result in suicide. This study aimed to utilize machine learning (ML) models to categorize and forecast...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, O., Epifanía-Huerta, A., Paulino-Moreno, C., Torres-Ceclén, C.
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14112
Enlace del recurso:https://hdl.handle.net/20.500.12867/14112
https://doi.org/10.3991/ijim.v18i14.48669
Nivel de acceso:acceso abierto
Materia:Prediction
Machine learning
College students
Depression
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_619e811121af49a0cddfebeac4e09844
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14112
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Machine learning models to classify and predict depression in college students
title Machine learning models to classify and predict depression in college students
spellingShingle Machine learning models to classify and predict depression in college students
Iparraguirre-Villanueva, O.
Prediction
Machine learning
College students
Depression
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Machine learning models to classify and predict depression in college students
title_full Machine learning models to classify and predict depression in college students
title_fullStr Machine learning models to classify and predict depression in college students
title_full_unstemmed Machine learning models to classify and predict depression in college students
title_sort Machine learning models to classify and predict depression in college students
author Iparraguirre-Villanueva, O.
author_facet Iparraguirre-Villanueva, O.
Epifanía-Huerta, A.
Paulino-Moreno, C.
Torres-Ceclén, C.
author_role author
author2 Epifanía-Huerta, A.
Paulino-Moreno, C.
Torres-Ceclén, C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, O.
Epifanía-Huerta, A.
Paulino-Moreno, C.
Torres-Ceclén, C.
dc.subject.es_PE.fl_str_mv Prediction
Machine learning
College students
Depression
topic Prediction
Machine learning
College students
Depression
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Depression is an increasingly common mental health condition worldwide and is influenced by various factors such as anxiety, frustration, obesity, medical issues, etc. In severe cases, it can even result in suicide. This study aimed to utilize machine learning (ML) models to categorize and forecast student depression. The research involved analyzing a dataset of 787 college students through a series of steps, including cleansing, model training, and testing using techniques to classify and predict student depression. Three ML models were employed: logistic regression (LR), K-nearest neighbor (KNN), and decision tree (DT). The findings revealed that the LR model achieved the highest accuracy in prediction, with a rate of 77%, 70% recall, and 72% F1 score. Moreover, the study highlighted that two out of five students experience mild depression, around 90% of depressed students do not seek treatment, obese students are 2.5 times more prone to depression, male students are twice as likely to be obese, and male students generally have a higher body mass index (BMI) compared to female students. The study concludes that integrating ML models into the triggers that lead to depression among students.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-10-29T14:38:06Z
dc.date.available.none.fl_str_mv 2025-10-29T14:38:06Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1865-7923
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14112
dc.identifier.journal.es_PE.fl_str_mv International Journal of Interactive Mobile Technologies
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3991/ijim.v18i14.48669
identifier_str_mv 1865-7923
International Journal of Interactive Mobile Technologies
url https://hdl.handle.net/20.500.12867/14112
https://doi.org/10.3991/ijim.v18i14.48669
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Federation of Engineering Education Societies (IFEES)
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1e5ac8f4-a5cd-4638-a851-e61d63454935/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/35b70ca8-9750-444d-956f-842d2f0e01d7/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/52da5295-f796-4905-a211-f6e0ea70a3f0/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0ec8708d-785a-4105-ab39-485b3c82e099/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/5cd8565a-e962-427e-a3f1-692737923ebe/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/48589bf5-80ac-4776-8260-cb4e1fd263e1/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
196a7dde10048dfbd45172a8e0d611bc
41d78f0121be34e0f9591398abe1c244
e83cab10a82fa2378f5f3193f86f2b95
fab0c76691a87debc95f2c5b2d09189f
6a52e4bf76557dd0570a3f39db68c470
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231357705486336
spelling Iparraguirre-Villanueva, O.Epifanía-Huerta, A.Paulino-Moreno, C.Torres-Ceclén, C.2025-10-29T14:38:06Z2025-10-29T14:38:06Z20241865-7923https://hdl.handle.net/20.500.12867/14112International Journal of Interactive Mobile Technologieshttps://doi.org/10.3991/ijim.v18i14.48669Depression is an increasingly common mental health condition worldwide and is influenced by various factors such as anxiety, frustration, obesity, medical issues, etc. In severe cases, it can even result in suicide. This study aimed to utilize machine learning (ML) models to categorize and forecast student depression. The research involved analyzing a dataset of 787 college students through a series of steps, including cleansing, model training, and testing using techniques to classify and predict student depression. Three ML models were employed: logistic regression (LR), K-nearest neighbor (KNN), and decision tree (DT). The findings revealed that the LR model achieved the highest accuracy in prediction, with a rate of 77%, 70% recall, and 72% F1 score. Moreover, the study highlighted that two out of five students experience mild depression, around 90% of depressed students do not seek treatment, obese students are 2.5 times more prone to depression, male students are twice as likely to be obese, and male students generally have a higher body mass index (BMI) compared to female students. The study concludes that integrating ML models into the triggers that lead to depression among students.Campus Chimboteapplication/pdfengInternational Federation of Engineering Education Societies (IFEES)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPPredictionMachine learningCollege studentsDepressionhttps://purl.org/pe-repo/ocde/ford#2.02.04Machine learning models to classify and predict depression in college studentsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1e5ac8f4-a5cd-4638-a851-e61d63454935/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTIparraguirre.O_Epifania.A_Paulino.C_Torres.C_Articulo_2024.pdf.txtIparraguirre.O_Epifania.A_Paulino.C_Torres.C_Articulo_2024.pdf.txtExtracted texttext/plain45415https://repositorio.utp.edu.pe/backend/api/core/bitstreams/35b70ca8-9750-444d-956f-842d2f0e01d7/download196a7dde10048dfbd45172a8e0d611bcMD53O.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdf.txtO.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdf.txtExtracted texttext/plain50082https://repositorio.utp.edu.pe/backend/api/core/bitstreams/52da5295-f796-4905-a211-f6e0ea70a3f0/download41d78f0121be34e0f9591398abe1c244MD58THUMBNAILIparraguirre.O_Epifania.A_Paulino.C_Torres.C_Articulo_2024.pdf.jpgIparraguirre.O_Epifania.A_Paulino.C_Torres.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg19491https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0ec8708d-785a-4105-ab39-485b3c82e099/downloade83cab10a82fa2378f5f3193f86f2b95MD54O.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdf.jpgO.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg37328https://repositorio.utp.edu.pe/backend/api/core/bitstreams/5cd8565a-e962-427e-a3f1-692737923ebe/downloadfab0c76691a87debc95f2c5b2d09189fMD59ORIGINALO.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdfO.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdfapplication/pdf790660https://repositorio.utp.edu.pe/backend/api/core/bitstreams/48589bf5-80ac-4776-8260-cb4e1fd263e1/download6a52e4bf76557dd0570a3f39db68c470MD5520.500.12867/14112oai:repositorio.utp.edu.pe:20.500.12867/141122025-11-30 16:30:47.672https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.934021
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).