Machine learning models to classify and predict depression in college students
Descripción del Articulo
Depression is an increasingly common mental health condition worldwide and is influenced by various factors such as anxiety, frustration, obesity, medical issues, etc. In severe cases, it can even result in suicide. This study aimed to utilize machine learning (ML) models to categorize and forecast...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14112 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14112 https://doi.org/10.3991/ijim.v18i14.48669 |
| Nivel de acceso: | acceso abierto |
| Materia: | Prediction Machine learning College students Depression https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_619e811121af49a0cddfebeac4e09844 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14112 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Machine learning models to classify and predict depression in college students |
| title |
Machine learning models to classify and predict depression in college students |
| spellingShingle |
Machine learning models to classify and predict depression in college students Iparraguirre-Villanueva, O. Prediction Machine learning College students Depression https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Machine learning models to classify and predict depression in college students |
| title_full |
Machine learning models to classify and predict depression in college students |
| title_fullStr |
Machine learning models to classify and predict depression in college students |
| title_full_unstemmed |
Machine learning models to classify and predict depression in college students |
| title_sort |
Machine learning models to classify and predict depression in college students |
| author |
Iparraguirre-Villanueva, O. |
| author_facet |
Iparraguirre-Villanueva, O. Epifanía-Huerta, A. Paulino-Moreno, C. Torres-Ceclén, C. |
| author_role |
author |
| author2 |
Epifanía-Huerta, A. Paulino-Moreno, C. Torres-Ceclén, C. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, O. Epifanía-Huerta, A. Paulino-Moreno, C. Torres-Ceclén, C. |
| dc.subject.es_PE.fl_str_mv |
Prediction Machine learning College students Depression |
| topic |
Prediction Machine learning College students Depression https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Depression is an increasingly common mental health condition worldwide and is influenced by various factors such as anxiety, frustration, obesity, medical issues, etc. In severe cases, it can even result in suicide. This study aimed to utilize machine learning (ML) models to categorize and forecast student depression. The research involved analyzing a dataset of 787 college students through a series of steps, including cleansing, model training, and testing using techniques to classify and predict student depression. Three ML models were employed: logistic regression (LR), K-nearest neighbor (KNN), and decision tree (DT). The findings revealed that the LR model achieved the highest accuracy in prediction, with a rate of 77%, 70% recall, and 72% F1 score. Moreover, the study highlighted that two out of five students experience mild depression, around 90% of depressed students do not seek treatment, obese students are 2.5 times more prone to depression, male students are twice as likely to be obese, and male students generally have a higher body mass index (BMI) compared to female students. The study concludes that integrating ML models into the triggers that lead to depression among students. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-29T14:38:06Z |
| dc.date.available.none.fl_str_mv |
2025-10-29T14:38:06Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1865-7923 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14112 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Interactive Mobile Technologies |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3991/ijim.v18i14.48669 |
| identifier_str_mv |
1865-7923 International Journal of Interactive Mobile Technologies |
| url |
https://hdl.handle.net/20.500.12867/14112 https://doi.org/10.3991/ijim.v18i14.48669 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
International Federation of Engineering Education Societies (IFEES) |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1e5ac8f4-a5cd-4638-a851-e61d63454935/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/35b70ca8-9750-444d-956f-842d2f0e01d7/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/52da5295-f796-4905-a211-f6e0ea70a3f0/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0ec8708d-785a-4105-ab39-485b3c82e099/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/5cd8565a-e962-427e-a3f1-692737923ebe/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/48589bf5-80ac-4776-8260-cb4e1fd263e1/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 196a7dde10048dfbd45172a8e0d611bc 41d78f0121be34e0f9591398abe1c244 e83cab10a82fa2378f5f3193f86f2b95 fab0c76691a87debc95f2c5b2d09189f 6a52e4bf76557dd0570a3f39db68c470 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231357705486336 |
| spelling |
Iparraguirre-Villanueva, O.Epifanía-Huerta, A.Paulino-Moreno, C.Torres-Ceclén, C.2025-10-29T14:38:06Z2025-10-29T14:38:06Z20241865-7923https://hdl.handle.net/20.500.12867/14112International Journal of Interactive Mobile Technologieshttps://doi.org/10.3991/ijim.v18i14.48669Depression is an increasingly common mental health condition worldwide and is influenced by various factors such as anxiety, frustration, obesity, medical issues, etc. In severe cases, it can even result in suicide. This study aimed to utilize machine learning (ML) models to categorize and forecast student depression. The research involved analyzing a dataset of 787 college students through a series of steps, including cleansing, model training, and testing using techniques to classify and predict student depression. Three ML models were employed: logistic regression (LR), K-nearest neighbor (KNN), and decision tree (DT). The findings revealed that the LR model achieved the highest accuracy in prediction, with a rate of 77%, 70% recall, and 72% F1 score. Moreover, the study highlighted that two out of five students experience mild depression, around 90% of depressed students do not seek treatment, obese students are 2.5 times more prone to depression, male students are twice as likely to be obese, and male students generally have a higher body mass index (BMI) compared to female students. The study concludes that integrating ML models into the triggers that lead to depression among students.Campus Chimboteapplication/pdfengInternational Federation of Engineering Education Societies (IFEES)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPPredictionMachine learningCollege studentsDepressionhttps://purl.org/pe-repo/ocde/ford#2.02.04Machine learning models to classify and predict depression in college studentsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1e5ac8f4-a5cd-4638-a851-e61d63454935/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTIparraguirre.O_Epifania.A_Paulino.C_Torres.C_Articulo_2024.pdf.txtIparraguirre.O_Epifania.A_Paulino.C_Torres.C_Articulo_2024.pdf.txtExtracted texttext/plain45415https://repositorio.utp.edu.pe/backend/api/core/bitstreams/35b70ca8-9750-444d-956f-842d2f0e01d7/download196a7dde10048dfbd45172a8e0d611bcMD53O.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdf.txtO.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdf.txtExtracted texttext/plain50082https://repositorio.utp.edu.pe/backend/api/core/bitstreams/52da5295-f796-4905-a211-f6e0ea70a3f0/download41d78f0121be34e0f9591398abe1c244MD58THUMBNAILIparraguirre.O_Epifania.A_Paulino.C_Torres.C_Articulo_2024.pdf.jpgIparraguirre.O_Epifania.A_Paulino.C_Torres.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg19491https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0ec8708d-785a-4105-ab39-485b3c82e099/downloade83cab10a82fa2378f5f3193f86f2b95MD54O.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdf.jpgO.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg37328https://repositorio.utp.edu.pe/backend/api/core/bitstreams/5cd8565a-e962-427e-a3f1-692737923ebe/downloadfab0c76691a87debc95f2c5b2d09189fMD59ORIGINALO.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdfO.Iparraguirre_A.Epifania_C.Paulino_C.Torres_Articulo_2024.pdfapplication/pdf790660https://repositorio.utp.edu.pe/backend/api/core/bitstreams/48589bf5-80ac-4776-8260-cb4e1fd263e1/download6a52e4bf76557dd0570a3f39db68c470MD5520.500.12867/14112oai:repositorio.utp.edu.pe:20.500.12867/141122025-11-30 16:30:47.672https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.934021 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).