State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model

Descripción del Articulo

The real-time prediction and estimation of the spread of diseases, such as COVID-19 is of paramount importance as evidenced by the recent pandemic. This work is concerned with the distributed parameter estimation of the time–space propagation of such diseases using a diffusion–reaction epidemiologic...

Descripción completa

Detalles Bibliográficos
Autores: Yupanqui Tello, Ivan Francisco, Wouwer, Alain Vande, Coutinho, Daniel
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6064
Enlace del recurso:https://hdl.handle.net/20.500.12867/6064
https://doi.org/10.1016/j.jprocont.2022.08.016
Nivel de acceso:acceso abierto
Materia:Epidemiological models
Mathematics for health sciences
Disease prevention
https://purl.org/pe-repo/ocde/ford#3.00.00
id UTPD_34228783cc65f4cd96c4b2822ea1c8a0
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6064
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
title State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
spellingShingle State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
Yupanqui Tello, Ivan Francisco
Epidemiological models
Mathematics for health sciences
Disease prevention
https://purl.org/pe-repo/ocde/ford#3.00.00
title_short State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
title_full State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
title_fullStr State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
title_full_unstemmed State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
title_sort State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type model
author Yupanqui Tello, Ivan Francisco
author_facet Yupanqui Tello, Ivan Francisco
Wouwer, Alain Vande
Coutinho, Daniel
author_role author
author2 Wouwer, Alain Vande
Coutinho, Daniel
author2_role author
author
dc.contributor.author.fl_str_mv Yupanqui Tello, Ivan Francisco
Wouwer, Alain Vande
Coutinho, Daniel
dc.subject.es_PE.fl_str_mv Epidemiological models
Mathematics for health sciences
Disease prevention
topic Epidemiological models
Mathematics for health sciences
Disease prevention
https://purl.org/pe-repo/ocde/ford#3.00.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.00.00
description The real-time prediction and estimation of the spread of diseases, such as COVID-19 is of paramount importance as evidenced by the recent pandemic. This work is concerned with the distributed parameter estimation of the time–space propagation of such diseases using a diffusion–reaction epidemiological model of the susceptible–exposed–infected–recovered (SEIR) type. State estimation is based on continuous measurements of the number of infections and deaths per unit of time and of the host spatial domain. The observer design method is based on positive definite matrices to parameterize a class of Lyapunov functionals, in order to stabilize the estimation error dynamics. Thus, the stability conditions can be expressed as a set of matrix inequality constraints which can be solved numerically using sum of squares (SOS) and standard semi-definite programming (SDP) tools. The observer performance is analyzed based on a simplified case study corresponding to the situation in France in March 2020 and shows promising results.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-21T15:44:52Z
dc.date.available.none.fl_str_mv 2022-10-21T15:44:52Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0959-1524
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6064
dc.identifier.journal.es_PE.fl_str_mv Journal of Process Control
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jprocont.2022.08.016
identifier_str_mv 0959-1524
Journal of Process Control
url https://hdl.handle.net/20.500.12867/6064
https://doi.org/10.1016/j.jprocont.2022.08.016
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Journal of Process Control;vol. 118, pp. 231-241
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Elsevier
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6064/1/I.Tello_JPC_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6064/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6064/3/I.Tello_JPC_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6064/4/I.Tello_JPC_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv b5007cff29485a6b58e323edeaaac9c0
8a4605be74aa9ea9d79846c1fba20a33
c708a4c64d8d3d1e1d503c039a1e375f
a4d23147d038ae6a59f6b82ac04e4e50
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984848017489920
spelling Yupanqui Tello, Ivan FranciscoWouwer, Alain VandeCoutinho, Daniel2022-10-21T15:44:52Z2022-10-21T15:44:52Z20220959-1524https://hdl.handle.net/20.500.12867/6064Journal of Process Controlhttps://doi.org/10.1016/j.jprocont.2022.08.016The real-time prediction and estimation of the spread of diseases, such as COVID-19 is of paramount importance as evidenced by the recent pandemic. This work is concerned with the distributed parameter estimation of the time–space propagation of such diseases using a diffusion–reaction epidemiological model of the susceptible–exposed–infected–recovered (SEIR) type. State estimation is based on continuous measurements of the number of infections and deaths per unit of time and of the host spatial domain. The observer design method is based on positive definite matrices to parameterize a class of Lyapunov functionals, in order to stabilize the estimation error dynamics. Thus, the stability conditions can be expressed as a set of matrix inequality constraints which can be solved numerically using sum of squares (SOS) and standard semi-definite programming (SDP) tools. The observer performance is analyzed based on a simplified case study corresponding to the situation in France in March 2020 and shows promising results.Campus Ateapplication/pdfengElsevierGBJournal of Process Control;vol. 118, pp. 231-241info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPEpidemiological modelsMathematics for health sciencesDisease preventionhttps://purl.org/pe-repo/ocde/ford#3.00.00State estimation of the time–space propagation of COVID-19 using a distributed parameter observer based on a SEIR-type modelinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALI.Tello_JPC_Articulo_eng_2022.pdfI.Tello_JPC_Articulo_eng_2022.pdfapplication/pdf1447349http://repositorio.utp.edu.pe/bitstream/20.500.12867/6064/1/I.Tello_JPC_Articulo_eng_2022.pdfb5007cff29485a6b58e323edeaaac9c0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6064/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTI.Tello_JPC_Articulo_eng_2022.pdf.txtI.Tello_JPC_Articulo_eng_2022.pdf.txtExtracted texttext/plain43075http://repositorio.utp.edu.pe/bitstream/20.500.12867/6064/3/I.Tello_JPC_Articulo_eng_2022.pdf.txtc708a4c64d8d3d1e1d503c039a1e375fMD53THUMBNAILI.Tello_JPC_Articulo_eng_2022.pdf.jpgI.Tello_JPC_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg22873http://repositorio.utp.edu.pe/bitstream/20.500.12867/6064/4/I.Tello_JPC_Articulo_eng_2022.pdf.jpga4d23147d038ae6a59f6b82ac04e4e50MD5420.500.12867/6064oai:repositorio.utp.edu.pe:20.500.12867/60642022-10-21 11:02:54.936Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.882474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).