Revisiting Takahashi's inversion theorem in discrete symmetry-based dual frameworks

Descripción del Articulo

The so-called Takahashi’s Inversion Theorem, the reconstruction of a given spinor based on its bilinear covariants, are re-examined, considering alternative dual structures. In contrast to the classical results, where the Dirac dual structure plays the central role, new duals are built using the dis...

Descripción completa

Detalles Bibliográficos
Autores: Coronado Villalobos, Carlos Hugo, Bueno Rogerio, R.J., Cavalcanti, R.T., Hoff da Silva, J.M.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7777
Enlace del recurso:https://hdl.handle.net/20.500.12867/7777
https://doi.org/10.1016/j.physleta.2023.129028
Nivel de acceso:acceso abierto
Materia:Discrete symmetry
Lounesto classification
Dual structure (Physics)
https://purl.org/pe-repo/ocde/ford#1.03.00
Descripción
Sumario:The so-called Takahashi’s Inversion Theorem, the reconstruction of a given spinor based on its bilinear covariants, are re-examined, considering alternative dual structures. In contrast to the classical results, where the Dirac dual structure plays the central role, new duals are built using the discrete symmetries C,P,T . Their combinations are also taken into account. Furthermore, the imposition of a new adjoint structure led us also to re-examine the representation of the Clifford algebra basis elements, uncovering new bilinear structures and a new Fierz aggregate. Those results might help construct theories for new beyond standard model fields
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).