Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
Descripción del Articulo
Sugarcane diseases in Peru occur due to the agricultural community's lack of understanding of these, which means a slow response to the application of methods of control and eradication of these diseases; thus, causing economic losses and underproduction. Due to the aforementioned, a web applic...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5993 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/5993 http://doi.org/10.101610.46338/ijetae0922_08 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial neural networks Sugarcane Plant diseases https://purl.org/pe-repo/ocde/ford#2.02.00 |
id |
UTPD_2afc5d0afe04920aaf2e9c7d3a2c1bb5 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5993 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
Design of a sugarcane diseases recognition system based on GoogLeNet for a web application |
title |
Design of a sugarcane diseases recognition system based on GoogLeNet for a web application |
spellingShingle |
Design of a sugarcane diseases recognition system based on GoogLeNet for a web application Barroso Maza, Cristian Leoncio Artificial neural networks Sugarcane Plant diseases https://purl.org/pe-repo/ocde/ford#2.02.00 |
title_short |
Design of a sugarcane diseases recognition system based on GoogLeNet for a web application |
title_full |
Design of a sugarcane diseases recognition system based on GoogLeNet for a web application |
title_fullStr |
Design of a sugarcane diseases recognition system based on GoogLeNet for a web application |
title_full_unstemmed |
Design of a sugarcane diseases recognition system based on GoogLeNet for a web application |
title_sort |
Design of a sugarcane diseases recognition system based on GoogLeNet for a web application |
author |
Barroso Maza, Cristian Leoncio |
author_facet |
Barroso Maza, Cristian Leoncio Lucas Cordova, Juan Carlos Sotomayor Beltran, Carlos Alberto |
author_role |
author |
author2 |
Lucas Cordova, Juan Carlos Sotomayor Beltran, Carlos Alberto |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Barroso Maza, Cristian Leoncio Lucas Cordova, Juan Carlos Sotomayor Beltran, Carlos Alberto |
dc.subject.es_PE.fl_str_mv |
Artificial neural networks Sugarcane Plant diseases |
topic |
Artificial neural networks Sugarcane Plant diseases https://purl.org/pe-repo/ocde/ford#2.02.00 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.00 |
description |
Sugarcane diseases in Peru occur due to the agricultural community's lack of understanding of these, which means a slow response to the application of methods of control and eradication of these diseases; thus, causing economic losses and underproduction. Due to the aforementioned, a web application for sugarcane diseases recognition is proposed. The five types of sugarcane diseases that will be recognized using this system are: Pineapple Sett Rot, Ring Spot, Mosaic, Brown Rust and Leaf Scorch. This system was developed using GoogLeNet, which is a 22 layers convolutional neural network (CNN), and also the Matlab software and its App Designer extensions (for the web application creation); additionally, Matlab Web App Server was used to host the application on the web. The pre-trained neural network developed in Matlab based on the GoogLeNet architecture allowed the creation and configuration of the training parameters (supervised learning) that were evaluated, and it was considered convenient to split the data between training, validation and testing (70%, 20% and 10%, respectively). A total of 250 images composed of 50 images for each disease were used. The web application was designed in App Designer which provided us with a set of tools and a programming interface for the insertion of the trained CNN, with a validation percentage of 94.67% obtained by varying the number of epochs, reaching a maximum of 6000 iterations. Finally, the web application supported by the Matlab Web App Server was generated and tests were performed on a local network, resulting in a web application capable of identifying images within the established guidelines, with an accuracy rate of 96%. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-27T23:21:21Z |
dc.date.available.none.fl_str_mv |
2022-09-27T23:21:21Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2250-2459 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5993 |
dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Emerging Technology and Advanced Engineering |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.101610.46338/ijetae0922_08 |
identifier_str_mv |
2250-2459 International Journal of Emerging Technology and Advanced Engineering |
url |
https://hdl.handle.net/20.500.12867/5993 http://doi.org/10.101610.46338/ijetae0922_08 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.none.fl_str_mv |
International Journal of Emerging Technology and Advanced Engineering;vol. 12, n° 9, pp.74-82 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
International Journal of Emerging Technology and Advanced Engineering |
dc.publisher.country.es_PE.fl_str_mv |
IN |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/1/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/3/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/4/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 ef8e97902c61a797c3561a44fcba15fd 60f62e70388475d4c94fddcbd117a92a ab6f98d9c0eb26f8b240d17c57318643 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984934531301376 |
spelling |
Barroso Maza, Cristian LeoncioLucas Cordova, Juan CarlosSotomayor Beltran, Carlos Alberto2022-09-27T23:21:21Z2022-09-27T23:21:21Z20222250-2459https://hdl.handle.net/20.500.12867/5993International Journal of Emerging Technology and Advanced Engineeringhttp://doi.org/10.101610.46338/ijetae0922_08Sugarcane diseases in Peru occur due to the agricultural community's lack of understanding of these, which means a slow response to the application of methods of control and eradication of these diseases; thus, causing economic losses and underproduction. Due to the aforementioned, a web application for sugarcane diseases recognition is proposed. The five types of sugarcane diseases that will be recognized using this system are: Pineapple Sett Rot, Ring Spot, Mosaic, Brown Rust and Leaf Scorch. This system was developed using GoogLeNet, which is a 22 layers convolutional neural network (CNN), and also the Matlab software and its App Designer extensions (for the web application creation); additionally, Matlab Web App Server was used to host the application on the web. The pre-trained neural network developed in Matlab based on the GoogLeNet architecture allowed the creation and configuration of the training parameters (supervised learning) that were evaluated, and it was considered convenient to split the data between training, validation and testing (70%, 20% and 10%, respectively). A total of 250 images composed of 50 images for each disease were used. The web application was designed in App Designer which provided us with a set of tools and a programming interface for the insertion of the trained CNN, with a validation percentage of 94.67% obtained by varying the number of epochs, reaching a maximum of 6000 iterations. Finally, the web application supported by the Matlab Web App Server was generated and tests were performed on a local network, resulting in a web application capable of identifying images within the established guidelines, with an accuracy rate of 96%.Campus Lima Centroapplication/pdfengInternational Journal of Emerging Technology and Advanced EngineeringINInternational Journal of Emerging Technology and Advanced Engineering;vol. 12, n° 9, pp.74-82info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial neural networksSugarcanePlant diseaseshttps://purl.org/pe-repo/ocde/ford#2.02.00Design of a sugarcane diseases recognition system based on GoogLeNet for a web applicationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdfC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdfapplication/pdf983276http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/1/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdfef8e97902c61a797c3561a44fcba15fdMD51TEXTC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.txtC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.txtExtracted texttext/plain34099http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/3/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.txt60f62e70388475d4c94fddcbd117a92aMD53THUMBNAILC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.jpgC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg21896http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/4/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.jpgab6f98d9c0eb26f8b240d17c57318643MD5420.500.12867/5993oai:repositorio.utp.edu.pe:20.500.12867/59932022-09-27 20:06:57.844Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).