Design of a sugarcane diseases recognition system based on GoogLeNet for a web application

Descripción del Articulo

Sugarcane diseases in Peru occur due to the agricultural community's lack of understanding of these, which means a slow response to the application of methods of control and eradication of these diseases; thus, causing economic losses and underproduction. Due to the aforementioned, a web applic...

Descripción completa

Detalles Bibliográficos
Autores: Barroso Maza, Cristian Leoncio, Lucas Cordova, Juan Carlos, Sotomayor Beltran, Carlos Alberto
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5993
Enlace del recurso:https://hdl.handle.net/20.500.12867/5993
http://doi.org/10.101610.46338/ijetae0922_08
Nivel de acceso:acceso abierto
Materia:Artificial neural networks
Sugarcane
Plant diseases
https://purl.org/pe-repo/ocde/ford#2.02.00
id UTPD_2afc5d0afe04920aaf2e9c7d3a2c1bb5
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5993
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
title Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
spellingShingle Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
Barroso Maza, Cristian Leoncio
Artificial neural networks
Sugarcane
Plant diseases
https://purl.org/pe-repo/ocde/ford#2.02.00
title_short Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
title_full Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
title_fullStr Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
title_full_unstemmed Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
title_sort Design of a sugarcane diseases recognition system based on GoogLeNet for a web application
author Barroso Maza, Cristian Leoncio
author_facet Barroso Maza, Cristian Leoncio
Lucas Cordova, Juan Carlos
Sotomayor Beltran, Carlos Alberto
author_role author
author2 Lucas Cordova, Juan Carlos
Sotomayor Beltran, Carlos Alberto
author2_role author
author
dc.contributor.author.fl_str_mv Barroso Maza, Cristian Leoncio
Lucas Cordova, Juan Carlos
Sotomayor Beltran, Carlos Alberto
dc.subject.es_PE.fl_str_mv Artificial neural networks
Sugarcane
Plant diseases
topic Artificial neural networks
Sugarcane
Plant diseases
https://purl.org/pe-repo/ocde/ford#2.02.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.00
description Sugarcane diseases in Peru occur due to the agricultural community's lack of understanding of these, which means a slow response to the application of methods of control and eradication of these diseases; thus, causing economic losses and underproduction. Due to the aforementioned, a web application for sugarcane diseases recognition is proposed. The five types of sugarcane diseases that will be recognized using this system are: Pineapple Sett Rot, Ring Spot, Mosaic, Brown Rust and Leaf Scorch. This system was developed using GoogLeNet, which is a 22 layers convolutional neural network (CNN), and also the Matlab software and its App Designer extensions (for the web application creation); additionally, Matlab Web App Server was used to host the application on the web. The pre-trained neural network developed in Matlab based on the GoogLeNet architecture allowed the creation and configuration of the training parameters (supervised learning) that were evaluated, and it was considered convenient to split the data between training, validation and testing (70%, 20% and 10%, respectively). A total of 250 images composed of 50 images for each disease were used. The web application was designed in App Designer which provided us with a set of tools and a programming interface for the insertion of the trained CNN, with a validation percentage of 94.67% obtained by varying the number of epochs, reaching a maximum of 6000 iterations. Finally, the web application supported by the Matlab Web App Server was generated and tests were performed on a local network, resulting in a web application capable of identifying images within the established guidelines, with an accuracy rate of 96%.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-27T23:21:21Z
dc.date.available.none.fl_str_mv 2022-09-27T23:21:21Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2250-2459
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5993
dc.identifier.journal.es_PE.fl_str_mv International Journal of Emerging Technology and Advanced Engineering
dc.identifier.doi.none.fl_str_mv http://doi.org/10.101610.46338/ijetae0922_08
identifier_str_mv 2250-2459
International Journal of Emerging Technology and Advanced Engineering
url https://hdl.handle.net/20.500.12867/5993
http://doi.org/10.101610.46338/ijetae0922_08
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv International Journal of Emerging Technology and Advanced Engineering;vol. 12, n° 9, pp.74-82
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Journal of Emerging Technology and Advanced Engineering
dc.publisher.country.es_PE.fl_str_mv IN
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/1/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/3/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/4/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
ef8e97902c61a797c3561a44fcba15fd
60f62e70388475d4c94fddcbd117a92a
ab6f98d9c0eb26f8b240d17c57318643
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984934531301376
spelling Barroso Maza, Cristian LeoncioLucas Cordova, Juan CarlosSotomayor Beltran, Carlos Alberto2022-09-27T23:21:21Z2022-09-27T23:21:21Z20222250-2459https://hdl.handle.net/20.500.12867/5993International Journal of Emerging Technology and Advanced Engineeringhttp://doi.org/10.101610.46338/ijetae0922_08Sugarcane diseases in Peru occur due to the agricultural community's lack of understanding of these, which means a slow response to the application of methods of control and eradication of these diseases; thus, causing economic losses and underproduction. Due to the aforementioned, a web application for sugarcane diseases recognition is proposed. The five types of sugarcane diseases that will be recognized using this system are: Pineapple Sett Rot, Ring Spot, Mosaic, Brown Rust and Leaf Scorch. This system was developed using GoogLeNet, which is a 22 layers convolutional neural network (CNN), and also the Matlab software and its App Designer extensions (for the web application creation); additionally, Matlab Web App Server was used to host the application on the web. The pre-trained neural network developed in Matlab based on the GoogLeNet architecture allowed the creation and configuration of the training parameters (supervised learning) that were evaluated, and it was considered convenient to split the data between training, validation and testing (70%, 20% and 10%, respectively). A total of 250 images composed of 50 images for each disease were used. The web application was designed in App Designer which provided us with a set of tools and a programming interface for the insertion of the trained CNN, with a validation percentage of 94.67% obtained by varying the number of epochs, reaching a maximum of 6000 iterations. Finally, the web application supported by the Matlab Web App Server was generated and tests were performed on a local network, resulting in a web application capable of identifying images within the established guidelines, with an accuracy rate of 96%.Campus Lima Centroapplication/pdfengInternational Journal of Emerging Technology and Advanced EngineeringINInternational Journal of Emerging Technology and Advanced Engineering;vol. 12, n° 9, pp.74-82info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial neural networksSugarcanePlant diseaseshttps://purl.org/pe-repo/ocde/ford#2.02.00Design of a sugarcane diseases recognition system based on GoogLeNet for a web applicationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdfC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdfapplication/pdf983276http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/1/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdfef8e97902c61a797c3561a44fcba15fdMD51TEXTC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.txtC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.txtExtracted texttext/plain34099http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/3/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.txt60f62e70388475d4c94fddcbd117a92aMD53THUMBNAILC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.jpgC.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg21896http://repositorio.utp.edu.pe/bitstream/20.500.12867/5993/4/C.Barroso_J.Lucas_C.Sotomayor_IJETAE_Articulo_eng_2022.pdf.jpgab6f98d9c0eb26f8b240d17c57318643MD5420.500.12867/5993oai:repositorio.utp.edu.pe:20.500.12867/59932022-09-27 20:06:57.844Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).