A comprehensive analysis for wind turbine transformer and its limits in the dissolved gas evaluation

Descripción del Articulo

This study employs the PRISMA-A methodology to conduct a systematic review of transformer fault diagnostics using Dissolved Gas Analysis (DGA) data. A comprehensive analysis was performed across four major databases—IEEE, Scopus, ScienceDirect (Elsevier), and Web of Science—yielding 12,511 initial r...

Descripción completa

Detalles Bibliográficos
Autor: Arias Velasquez, Ricardo Manuel
Formato: revisión
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14514
Enlace del recurso:https://hdl.handle.net/20.500.12867/14514
https://doi.org/10.1016/j.heliyon.2024.e39449
Nivel de acceso:acceso abierto
Materia:Dissolved gas analysis
Transformers
Wind park
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:This study employs the PRISMA-A methodology to conduct a systematic review of transformer fault diagnostics using Dissolved Gas Analysis (DGA) data. A comprehensive analysis was performed across four major databases—IEEE, Scopus, ScienceDirect (Elsevier), and Web of Science—yielding 12,511 initial records. Following rigorous evaluation, including duplicate removal and eligibility criteria assessment, 1190 articles underwent statistical evaluation. The search strategy focused on keywords related to transformer faults and diagnostic methods, resulting in a refined dataset of 4810 DGA samples from wind park transformers. Detailed statistical analysis of gas concentrations—hydrogen, methane, carbon monoxide, carbon dioxide, ethylene, ethane, acetylene, oxygen, and nitrogen—revealed significant insights into fault indicators and distribution patterns. Furthermore, predictive modeling using various machine learning algorithms highlighted the efficacy of models such as Random Forest and CART, achieving accuracies up to 95.29 % in fault prediction tasks. Proposed revisions to IEEE gas concentration thresholds aim to enhance early fault detection capabilities, thereby improving maintenance planning and transformer reliability. The findings underscore the importance of advanced analytics and sustainable practices in transformer diagnostics, calling for continued research in predictive maintenance and eco-friendly insulation technologies to meet future energy challenges.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).