Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce

Descripción del Articulo

Recommender systems have had a great development in recent years, helping exponentially in the electronic commerce sector. This has many applications to improve user behavior factors with different filtering techniques; however, most of these systems lack a presentation and interaction model that re...

Descripción completa

Detalles Bibliográficos
Autor: Ovalle, Christian
Formato: objeto de conferencia
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14350
Enlace del recurso:https://hdl.handle.net/20.500.12867/14350
https://doi.org/10.18687/LACCEI2024.1.1.227
Nivel de acceso:acceso abierto
Materia:Recommendation System
ChatGPT
E-commerce
Post-purchase
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_19e23c04b2c9a3e85a95a58712a39d15
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14350
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
title Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
spellingShingle Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
Ovalle, Christian
Recommendation System
ChatGPT
E-commerce
Post-purchase
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
title_full Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
title_fullStr Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
title_full_unstemmed Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
title_sort Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
author Ovalle, Christian
author_facet Ovalle, Christian
author_role author
dc.contributor.author.fl_str_mv Ovalle, Christian
dc.subject.es_PE.fl_str_mv Recommendation System
ChatGPT
E-commerce
Post-purchase
topic Recommendation System
ChatGPT
E-commerce
Post-purchase
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Recommender systems have had a great development in recent years, helping exponentially in the electronic commerce sector. This has many applications to improve user behavior factors with different filtering techniques; however, most of these systems lack a presentation and interaction model that really influences users. In this context, e-commerce sites seek different strategies to allocate recommendations viewed by the online user in an accurate and timely manner; even so, reviewing different articles it is not very clear if the way in which recommended articles are presented has a positive impact on user behavior. On the other hand, the technology of conversational artificial intelligence systems had a great size, highlighting ChatGPT as an innovative tool. Finally, this research seeks to validate whether the implementation of an integrated SR in ChatGPT influences the post-purchase behavior of users of an ecommerce store. The results show that by taking advantage of the potential of conversational AI to provide more effective and personalized recommendations, there is an increase of 34.15% with respect to the recommendation of users, while in the purchase of recommended products there is an exponential increase of 54.05%; Likewise, it is evident that users who make repurchases after 14 days from their initial purchase have an increase of 46.67%; finally, that the repurchase of products from the ecommerce store has a slight significant increase of 9.52%.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-04T15:10:38Z
dc.date.available.none.fl_str_mv 2025-11-04T15:10:38Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format conferenceObject
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2414-6390
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14350
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18687/LACCEI2024.1.1.227
identifier_str_mv 2414-6390
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
url https://hdl.handle.net/20.500.12867/14350
https://doi.org/10.18687/LACCEI2024.1.1.227
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4b0910ed-9954-4714-9afe-f1b1156785cf/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/82c7332b-1641-43c3-91fe-9a660b6fe3f3/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/80019050-680f-463d-b8b3-8f6e0aed0e66/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/873a9893-1ca1-44e8-b790-395e86c3a277/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/88506328-3270-450a-9cbe-e1a565bda33b/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ccc97fcb-27b0-42c8-a59c-12160cb728df/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
a6a8ae3e1d35743bdc60e3dc795cdfa7
7fcd6222087e7d85c0c7e4971ac61758
1bd166dd61637ea94fa17fc27f81b4de
bbc6a38c301886b40aa6166eed6ace07
a889d1a0d3622f131cb544b7ad3272be
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852865830020186112
spelling Ovalle, Christian2025-11-04T15:10:38Z2025-11-04T15:10:38Z20242414-6390https://hdl.handle.net/20.500.12867/14350Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.227Recommender systems have had a great development in recent years, helping exponentially in the electronic commerce sector. This has many applications to improve user behavior factors with different filtering techniques; however, most of these systems lack a presentation and interaction model that really influences users. In this context, e-commerce sites seek different strategies to allocate recommendations viewed by the online user in an accurate and timely manner; even so, reviewing different articles it is not very clear if the way in which recommended articles are presented has a positive impact on user behavior. On the other hand, the technology of conversational artificial intelligence systems had a great size, highlighting ChatGPT as an innovative tool. Finally, this research seeks to validate whether the implementation of an integrated SR in ChatGPT influences the post-purchase behavior of users of an ecommerce store. The results show that by taking advantage of the potential of conversational AI to provide more effective and personalized recommendations, there is an increase of 34.15% with respect to the recommendation of users, while in the purchase of recommended products there is an exponential increase of 54.05%; Likewise, it is evident that users who make repurchases after 14 days from their initial purchase have an increase of 46.67%; finally, that the repurchase of products from the ecommerce store has a slight significant increase of 9.52%.Campus Lima Centroapplication/pdfspaLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPRecommendation SystemChatGPTE-commercePost-purchasehttps://purl.org/pe-repo/ocde/ford#2.02.04Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerceinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4b0910ed-9954-4714-9afe-f1b1156785cf/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTOvalle.C_Conference_Paper_2024.pdf.txtOvalle.C_Conference_Paper_2024.pdf.txtExtracted texttext/plain28740https://repositorio.utp.edu.pe/backend/api/core/bitstreams/82c7332b-1641-43c3-91fe-9a660b6fe3f3/downloada6a8ae3e1d35743bdc60e3dc795cdfa7MD53C.Ovalle_Conference_Paper_2024.pdf.txtC.Ovalle_Conference_Paper_2024.pdf.txtExtracted texttext/plain29597https://repositorio.utp.edu.pe/backend/api/core/bitstreams/80019050-680f-463d-b8b3-8f6e0aed0e66/download7fcd6222087e7d85c0c7e4971ac61758MD58THUMBNAILOvalle.C_Conference_Paper_2024.pdf.jpgOvalle.C_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg14635https://repositorio.utp.edu.pe/backend/api/core/bitstreams/873a9893-1ca1-44e8-b790-395e86c3a277/download1bd166dd61637ea94fa17fc27f81b4deMD54C.Ovalle_Conference_Paper_2024.pdf.jpgC.Ovalle_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg26393https://repositorio.utp.edu.pe/backend/api/core/bitstreams/88506328-3270-450a-9cbe-e1a565bda33b/downloadbbc6a38c301886b40aa6166eed6ace07MD59ORIGINALC.Ovalle_Conference_Paper_2024.pdfC.Ovalle_Conference_Paper_2024.pdfapplication/pdf501802https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ccc97fcb-27b0-42c8-a59c-12160cb728df/downloada889d1a0d3622f131cb544b7ad3272beMD5520.500.12867/14350oai:repositorio.utp.edu.pe:20.500.12867/143502025-11-30 18:03:17.384https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.926692
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).