Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce
Descripción del Articulo
Recommender systems have had a great development in recent years, helping exponentially in the electronic commerce sector. This has many applications to improve user behavior factors with different filtering techniques; however, most of these systems lack a presentation and interaction model that re...
| Autor: | |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14350 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14350 https://doi.org/10.18687/LACCEI2024.1.1.227 |
| Nivel de acceso: | acceso abierto |
| Materia: | Recommendation System ChatGPT E-commerce Post-purchase https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_19e23c04b2c9a3e85a95a58712a39d15 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14350 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce |
| title |
Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce |
| spellingShingle |
Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce Ovalle, Christian Recommendation System ChatGPT E-commerce Post-purchase https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce |
| title_full |
Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce |
| title_fullStr |
Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce |
| title_full_unstemmed |
Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce |
| title_sort |
Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerce |
| author |
Ovalle, Christian |
| author_facet |
Ovalle, Christian |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Ovalle, Christian |
| dc.subject.es_PE.fl_str_mv |
Recommendation System ChatGPT E-commerce Post-purchase |
| topic |
Recommendation System ChatGPT E-commerce Post-purchase https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Recommender systems have had a great development in recent years, helping exponentially in the electronic commerce sector. This has many applications to improve user behavior factors with different filtering techniques; however, most of these systems lack a presentation and interaction model that really influences users. In this context, e-commerce sites seek different strategies to allocate recommendations viewed by the online user in an accurate and timely manner; even so, reviewing different articles it is not very clear if the way in which recommended articles are presented has a positive impact on user behavior. On the other hand, the technology of conversational artificial intelligence systems had a great size, highlighting ChatGPT as an innovative tool. Finally, this research seeks to validate whether the implementation of an integrated SR in ChatGPT influences the post-purchase behavior of users of an ecommerce store. The results show that by taking advantage of the potential of conversational AI to provide more effective and personalized recommendations, there is an increase of 34.15% with respect to the recommendation of users, while in the purchase of recommended products there is an exponential increase of 54.05%; Likewise, it is evident that users who make repurchases after 14 days from their initial purchase have an increase of 46.67%; finally, that the repurchase of products from the ecommerce store has a slight significant increase of 9.52%. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-04T15:10:38Z |
| dc.date.available.none.fl_str_mv |
2025-11-04T15:10:38Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2414-6390 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14350 |
| dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18687/LACCEI2024.1.1.227 |
| identifier_str_mv |
2414-6390 Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| url |
https://hdl.handle.net/20.500.12867/14350 https://doi.org/10.18687/LACCEI2024.1.1.227 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4b0910ed-9954-4714-9afe-f1b1156785cf/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/82c7332b-1641-43c3-91fe-9a660b6fe3f3/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/80019050-680f-463d-b8b3-8f6e0aed0e66/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/873a9893-1ca1-44e8-b790-395e86c3a277/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/88506328-3270-450a-9cbe-e1a565bda33b/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ccc97fcb-27b0-42c8-a59c-12160cb728df/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 a6a8ae3e1d35743bdc60e3dc795cdfa7 7fcd6222087e7d85c0c7e4971ac61758 1bd166dd61637ea94fa17fc27f81b4de bbc6a38c301886b40aa6166eed6ace07 a889d1a0d3622f131cb544b7ad3272be |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852865830020186112 |
| spelling |
Ovalle, Christian2025-11-04T15:10:38Z2025-11-04T15:10:38Z20242414-6390https://hdl.handle.net/20.500.12867/14350Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.227Recommender systems have had a great development in recent years, helping exponentially in the electronic commerce sector. This has many applications to improve user behavior factors with different filtering techniques; however, most of these systems lack a presentation and interaction model that really influences users. In this context, e-commerce sites seek different strategies to allocate recommendations viewed by the online user in an accurate and timely manner; even so, reviewing different articles it is not very clear if the way in which recommended articles are presented has a positive impact on user behavior. On the other hand, the technology of conversational artificial intelligence systems had a great size, highlighting ChatGPT as an innovative tool. Finally, this research seeks to validate whether the implementation of an integrated SR in ChatGPT influences the post-purchase behavior of users of an ecommerce store. The results show that by taking advantage of the potential of conversational AI to provide more effective and personalized recommendations, there is an increase of 34.15% with respect to the recommendation of users, while in the purchase of recommended products there is an exponential increase of 54.05%; Likewise, it is evident that users who make repurchases after 14 days from their initial purchase have an increase of 46.67%; finally, that the repurchase of products from the ecommerce store has a slight significant increase of 9.52%.Campus Lima Centroapplication/pdfspaLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPRecommendation SystemChatGPTE-commercePost-purchasehttps://purl.org/pe-repo/ocde/ford#2.02.04Sistema de recomendación integrado en ChatGPT para analizar el comportamiento poscompra de usuarios de una tienda e-commerceinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4b0910ed-9954-4714-9afe-f1b1156785cf/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTOvalle.C_Conference_Paper_2024.pdf.txtOvalle.C_Conference_Paper_2024.pdf.txtExtracted texttext/plain28740https://repositorio.utp.edu.pe/backend/api/core/bitstreams/82c7332b-1641-43c3-91fe-9a660b6fe3f3/downloada6a8ae3e1d35743bdc60e3dc795cdfa7MD53C.Ovalle_Conference_Paper_2024.pdf.txtC.Ovalle_Conference_Paper_2024.pdf.txtExtracted texttext/plain29597https://repositorio.utp.edu.pe/backend/api/core/bitstreams/80019050-680f-463d-b8b3-8f6e0aed0e66/download7fcd6222087e7d85c0c7e4971ac61758MD58THUMBNAILOvalle.C_Conference_Paper_2024.pdf.jpgOvalle.C_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg14635https://repositorio.utp.edu.pe/backend/api/core/bitstreams/873a9893-1ca1-44e8-b790-395e86c3a277/download1bd166dd61637ea94fa17fc27f81b4deMD54C.Ovalle_Conference_Paper_2024.pdf.jpgC.Ovalle_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg26393https://repositorio.utp.edu.pe/backend/api/core/bitstreams/88506328-3270-450a-9cbe-e1a565bda33b/downloadbbc6a38c301886b40aa6166eed6ace07MD59ORIGINALC.Ovalle_Conference_Paper_2024.pdfC.Ovalle_Conference_Paper_2024.pdfapplication/pdf501802https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ccc97fcb-27b0-42c8-a59c-12160cb728df/downloada889d1a0d3622f131cb544b7ad3272beMD5520.500.12867/14350oai:repositorio.utp.edu.pe:20.500.12867/143502025-11-30 18:03:17.384https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.926692 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).