Extraction, Chemical Functionalization, and Application of Stipa obtusa Cellulose Microfibers for Lead Ion Adsorption

Descripción del Articulo

Environmental contamination by heavy metals, such as lead (Pb2+), presents significant risks to ecosystems and public health, necessitating the development of innovative and sustainable remediation methods. This study introduces a novel adsorbent derived from microcellulose (MC) extracted from Stipa...

Descripción completa

Detalles Bibliográficos
Autores: Willis Villar, Luhana Guadalupe, Garces Porras, Karen, Rodríguez Zúñiga, Ursula Fabiola, Flores Barreda, Carmen Elena
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de Ingeniería y tecnología
Repositorio:UTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utec.edu.pe:20.500.12815/485
Enlace del recurso:https://hdl.handle.net/20.500.12815/485
https://doi.org/10.1080/15440478.2025.2476631
Nivel de acceso:acceso abierto
Materia:Adsorption isotherms
Agricultural pollution
Air pollution
Bioremediation
Gas adsorption
Heavy metals
Insulator contamination
Microfibers
Pollution detection
Soil pollution
Thermal pollution
Water pollution
Adsorption of metal ions
Cellulose microfiber
Lead ions
Stipa obtusa
Adsorption
Gravimetry
Lead
https://purl.org/pe-repo/ocde/ford#2.04.01
Descripción
Sumario:Environmental contamination by heavy metals, such as lead (Pb2+), presents significant risks to ecosystems and public health, necessitating the development of innovative and sustainable remediation methods. This study introduces a novel adsorbent derived from microcellulose (MC) extracted from Stipa obtusa, a grass species native to the Andean regions of Peru, Ecuador, and Bolivia, for the removal of lead ions from aqueous solutions. MC fibers were isolated through thermochemical processing, followed by chemical functionalization with sodium chlorite (NaClO2). The resulting functionalized microfibers (FMC) were characterized using elemental analysis, Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller surface area analysis (BET), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Batch adsorption experiments identified optimal conditions: an adsorbent dosage of 0.4 mg/L, pH 5, and a contact time of 60 min, achieving a maximum adsorption capacity of 34 mg/g. Kinetic studies indicated the adsorption process followed a pseudo-second-order model, while the adsorption isotherm data best fitted the Freundlich model, indicating a heterogeneous adsorption process. These results demonstrate the potential of FMC as an efficient and environmentally friendly adsorbent for heavy metal ion removal in water treatment.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).