Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation

Descripción del Articulo

Chaotic bioprinting enables the fabrication of microstructured hydrogel fibers with co-extruding permanent and fugitive inks using a kenics static mixer (KSM) printhead. However, these fibers degrade completely after 7 days of static culture. Survival of hydrogel constructs for prolonged periods is...

Descripción completa

Detalles Bibliográficos
Autor: Cavero Arrivasplata, Andrea Cristina
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad de Ingeniería y tecnología
Repositorio:UTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utec.edu.pe:20.500.12815/365
Enlace del recurso:https://hdl.handle.net/20.500.12815/365
Nivel de acceso:acceso abierto
Materia:Bioimpresión
Hidrogeles
Hidrogeles en medicina
Fibras huecas
Músculo Esquelético
Ingeniería de Tejidos
Bioprinting
Hydrogels
Hydrogels in medicine
Hollow fibers
Muscle, Skeletal
https://purl.org/pe-repo/ocde/ford#2.11.00
id UTEC_482813f17e2596bf83ef8141ec410443
oai_identifier_str oai:repositorio.utec.edu.pe:20.500.12815/365
network_acronym_str UTEC
network_name_str UTEC-Institucional
repository_id_str 4822
dc.title.es_PE.fl_str_mv Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation
title Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation
spellingShingle Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation
Cavero Arrivasplata, Andrea Cristina
Bioimpresión
Hidrogeles
Hidrogeles en medicina
Fibras huecas
Músculo Esquelético
Ingeniería de Tejidos
Bioprinting
Hydrogels
Hydrogels in medicine
Hollow fibers
Muscle, Skeletal
https://purl.org/pe-repo/ocde/ford#2.11.00
title_short Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation
title_full Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation
title_fullStr Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation
title_full_unstemmed Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation
title_sort Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation
author Cavero Arrivasplata, Andrea Cristina
author_facet Cavero Arrivasplata, Andrea Cristina
author_role author
dc.contributor.advisor.fl_str_mv Valdivia Silva, Julio Ernesto
Trujillo de Santiago, Grissel
Alvarez, Mario Moises
dc.contributor.author.fl_str_mv Cavero Arrivasplata, Andrea Cristina
dc.subject.es_PE.fl_str_mv Bioimpresión
Hidrogeles
Hidrogeles en medicina
Fibras huecas
Músculo Esquelético
Ingeniería de Tejidos
Bioprinting
Hydrogels
Hydrogels in medicine
Hollow fibers
Muscle, Skeletal
topic Bioimpresión
Hidrogeles
Hidrogeles en medicina
Fibras huecas
Músculo Esquelético
Ingeniería de Tejidos
Bioprinting
Hydrogels
Hydrogels in medicine
Hollow fibers
Muscle, Skeletal
https://purl.org/pe-repo/ocde/ford#2.11.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.00
description Chaotic bioprinting enables the fabrication of microstructured hydrogel fibers with co-extruding permanent and fugitive inks using a kenics static mixer (KSM) printhead. However, these fibers degrade completely after 7 days of static culture. Survival of hydrogel constructs for prolonged periods is critical for tissue maturation. Therefore, in this project, chaotic bioprinting was optimized to reinforce multichannel hollow fibers, thereby extending the culture time to enable skeletal muscle tissue maturation. A KSM printhead equipped with eight inlets and two mixing elements was used to print hydrogel fibers with three materials: a bioink suitable to load cells, a sacrificial material to create hollow channels, and a structural material to provide mechanical stability (without cells). Each bioink layer was placed 62.5 µm apart from a hollow channel. Furthermore, the optimal ratio for each material was determined to enhance structural stability. The tensile test and degradation analysis indicated that the hydrogel fibers composed of 37.5% of the structural ink, 37.5% of the bioink and 25% of the sacrificial ink exhibited sufficient strength (elastic modulus = 12, 8 kPa) to conserve more than 75% of their mass after 72 h of continuous agitation in a rocking bioreactor. In contrast, the fibers containing no reinforcing ink entirely degraded in the same period or earlier. The bioprinting experiments also showed that mouse myoblasts adhering to the reinforced hollow fibers exhibited greater cell viability (95%) than myoblasts on reinforced solid filaments during 14 days of static culture. In the future, these reinforced multichannel fibers could mature musculoskeletal tissue with culturing under continuous agitation.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-20T22:33:23Z
dc.date.available.none.fl_str_mv 2024-04-20T22:33:23Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Cavero Arrivasplata, A. C. (2024). Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation [Tesis de Título Profesional, Universidad de Ingeniería y Tecnología]. Repositorio Institucional UTEC. https://hdl.handle.net/20.500.12815/365
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12815/365
identifier_str_mv Cavero Arrivasplata, A. C. (2024). Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation [Tesis de Título Profesional, Universidad de Ingeniería y Tecnología]. Repositorio Institucional UTEC. https://hdl.handle.net/20.500.12815/365
url https://hdl.handle.net/20.500.12815/365
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad de Ingeniería y Tecnología
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional UTEC
Universidad de Ingeniería y Tecnología - UTEC
dc.source.none.fl_str_mv reponame:UTEC-Institucional
instname:Universidad de Ingeniería y tecnología
instacron:UTEC
instname_str Universidad de Ingeniería y tecnología
instacron_str UTEC
institution UTEC
reponame_str UTEC-Institucional
collection UTEC-Institucional
bitstream.url.fl_str_mv http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/14/Cavero%20Arrivasplata_Tesis.pdf
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/2/Cavero%20Arrivasplata_Autorizaci%c3%b3n.pdf
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/3/Cavero%20Arrivasplata_Acta%20de%20sustentaci%c3%b3n.pdf
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/4/Cavero%20Arrivasplata_Reporte%20de%20similitud.pdf
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/5/license.txt
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/15/Cavero%20Arrivasplata_Tesis.pdf.txt
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/8/Cavero%20Arrivasplata_Autorizaci%c3%b3n.pdf.txt
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/10/Cavero%20Arrivasplata_Acta%20de%20sustentaci%c3%b3n.pdf.txt
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/12/Cavero%20Arrivasplata_Reporte%20de%20similitud.pdf.txt
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/16/Cavero%20Arrivasplata_Tesis.pdf.jpg
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/9/Cavero%20Arrivasplata_Autorizaci%c3%b3n.pdf.jpg
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/11/Cavero%20Arrivasplata_Acta%20de%20sustentaci%c3%b3n.pdf.jpg
http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/13/Cavero%20Arrivasplata_Reporte%20de%20similitud.pdf.jpg
bitstream.checksum.fl_str_mv 08cd17fd61bb353f1f0a7813245bcd61
e79cf88719c70c513dc489f92878207f
501627ae81799951913ef7fea2773333
6a6bc697e72b44e90f0946c805797438
8a4605be74aa9ea9d79846c1fba20a33
145485051b03725cc688120a0d476cb1
9de8f4b7227837471681cef9a8e1431d
93324f0adf61034ef690535095ba7578
6f0fccd3524963ac52f5a23b7f0a7546
26e12614958ad7f11ba008647f41c7da
c429dfdf08925592ec91c48608ff9080
88ccdb812e21a54a877c6d7e2f048a12
c4c224268161480304eccd0494045f7f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTEC
repository.mail.fl_str_mv repositorio@utec.edu.pe
_version_ 1843166366934237184
spelling Valdivia Silva, Julio ErnestoTrujillo de Santiago, GrisselAlvarez, Mario MoisesCavero Arrivasplata, Andrea Cristina2024-04-20T22:33:23Z2024-04-20T22:33:23Z2024Cavero Arrivasplata, A. C. (2024). Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitation [Tesis de Título Profesional, Universidad de Ingeniería y Tecnología]. Repositorio Institucional UTEC. https://hdl.handle.net/20.500.12815/365https://hdl.handle.net/20.500.12815/365Chaotic bioprinting enables the fabrication of microstructured hydrogel fibers with co-extruding permanent and fugitive inks using a kenics static mixer (KSM) printhead. However, these fibers degrade completely after 7 days of static culture. Survival of hydrogel constructs for prolonged periods is critical for tissue maturation. Therefore, in this project, chaotic bioprinting was optimized to reinforce multichannel hollow fibers, thereby extending the culture time to enable skeletal muscle tissue maturation. A KSM printhead equipped with eight inlets and two mixing elements was used to print hydrogel fibers with three materials: a bioink suitable to load cells, a sacrificial material to create hollow channels, and a structural material to provide mechanical stability (without cells). Each bioink layer was placed 62.5 µm apart from a hollow channel. Furthermore, the optimal ratio for each material was determined to enhance structural stability. The tensile test and degradation analysis indicated that the hydrogel fibers composed of 37.5% of the structural ink, 37.5% of the bioink and 25% of the sacrificial ink exhibited sufficient strength (elastic modulus = 12, 8 kPa) to conserve more than 75% of their mass after 72 h of continuous agitation in a rocking bioreactor. In contrast, the fibers containing no reinforcing ink entirely degraded in the same period or earlier. The bioprinting experiments also showed that mouse myoblasts adhering to the reinforced hollow fibers exhibited greater cell viability (95%) than myoblasts on reinforced solid filaments during 14 days of static culture. In the future, these reinforced multichannel fibers could mature musculoskeletal tissue with culturing under continuous agitation.La bioimpresión caótica permite la fabricación de fibras de hidrogel microestructuradas. Esta consiste en coextruir una tinta permanente y una fugitiva a través de un cabezal de impresión Kenics Static Mixer (KSM). Sin embargo, estas fibras se degradan después de 7 días de cultivo estático. La supervivencia de los constructos de hidrogel durante periodos prolongados de tiempo es fundamental para la maduración del tejido. En este proyecto, se optimizó la bioimpresión caótica para reforzar las fibras huecas multicanal para prolongar el tiempo de cultivo. Para ello, se utilizó un cabezal de impresión KSM equipado con 8 entradas y 2 elementos de mezclado para imprimir con tres materiales: una biotinta para cargar células, un material sacrificable y un material estructural. Los filamentos se imprimieron variando la proporción de las tres tintas y su posición en el cabezal de extrusión sin comprometer la proporción de material estructural, el número de capas con células y acomodando microcanales huecos al menos cada 200 µm de las capas con células. El ensayo de tracción y el análisis de degradación indicaron que las fibras de hidrogel que contienen 3/8 de la tinta de refuerzo, 3/8 de la biotinta y 2/8 de la tinta de sacrificio exhiben suficiente resistencia (módulo de elasticidad = 12,8 kPa) para conservar más del 75% de su masa después de 72 h de agitación continua en un biorreactor oscilante. Por el contrario, las fibras que no contenían refuerzo se degradaron completamente en el mismo periodo de tiempo o antes. Los experimentos de bioimpresión muestran que los mioblastos de ratón adheridos a las fibras huecas reforzadas exhiben mayor viabilidad celular (un 95% más) que los mioblastos en filamentos sólidos durante 14 días de cultivo estático. En el futuro, estas fibras podrían utilizarse como plataforma para madurar tejido musculoesquelético con cultivo en agitación continua.Tesisapplication/pdfengUniversidad de Ingeniería y TecnologíaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional UTECUniversidad de Ingeniería y Tecnología - UTECreponame:UTEC-Institucionalinstname:Universidad de Ingeniería y tecnologíainstacron:UTECBioimpresiónHidrogelesHidrogeles en medicinaFibras huecasMúsculo EsqueléticoIngeniería de TejidosBioprintingHydrogelsHydrogels in medicineHollow fibersMuscle, Skeletalhttps://purl.org/pe-repo/ocde/ford#2.11.00Optimization of chaotic bioprinting to produce reinforced multichannel hydrogel fibers for the maturation of skeletal muscle tissue under agitationinfo:eu-repo/semantics/bachelorThesisSUNEDUBioingenieríaUniversidad de Ingeniería y Tecnología. BioingenieríaTítulo ProfesionalBioingeniera23994395https://orcid.org/0000-0002-7061-3756https://orcid.org/0000-0001-9230-4607https://orcid.org/0000-0002-9131-5344TUSG840229MCLRNR00XXALMR69101508H00071239119https://orcid.org/0000-0001-5178-6224511016Saavedra Espinoza, Harry GustavoBejarano Grández, OmarCardenas Lizana, Paulhttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALCavero Arrivasplata_Tesis.pdfCavero Arrivasplata_Tesis.pdfapplication/pdf9359850http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/14/Cavero%20Arrivasplata_Tesis.pdf08cd17fd61bb353f1f0a7813245bcd61MD514open accessCavero Arrivasplata_Autorización.pdfCavero Arrivasplata_Autorización.pdfapplication/pdf58232http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/2/Cavero%20Arrivasplata_Autorizaci%c3%b3n.pdfe79cf88719c70c513dc489f92878207fMD52metadata only accessCavero Arrivasplata_Acta de sustentación.pdfCavero Arrivasplata_Acta de sustentación.pdfapplication/pdf272533http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/3/Cavero%20Arrivasplata_Acta%20de%20sustentaci%c3%b3n.pdf501627ae81799951913ef7fea2773333MD53metadata only accessCavero Arrivasplata_Reporte de similitud.pdfCavero Arrivasplata_Reporte de similitud.pdfapplication/pdf107869http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/4/Cavero%20Arrivasplata_Reporte%20de%20similitud.pdf6a6bc697e72b44e90f0946c805797438MD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55open accessTEXTCavero Arrivasplata_Tesis.pdf.txtCavero Arrivasplata_Tesis.pdf.txtExtracted texttext/plain198824http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/15/Cavero%20Arrivasplata_Tesis.pdf.txt145485051b03725cc688120a0d476cb1MD515open accessCavero Arrivasplata_Autorización.pdf.txtCavero Arrivasplata_Autorización.pdf.txtExtracted texttext/plain3775http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/8/Cavero%20Arrivasplata_Autorizaci%c3%b3n.pdf.txt9de8f4b7227837471681cef9a8e1431dMD58metadata only accessCavero Arrivasplata_Acta de sustentación.pdf.txtCavero Arrivasplata_Acta de sustentación.pdf.txtExtracted texttext/plain861http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/10/Cavero%20Arrivasplata_Acta%20de%20sustentaci%c3%b3n.pdf.txt93324f0adf61034ef690535095ba7578MD510metadata only accessCavero Arrivasplata_Reporte de similitud.pdf.txtCavero Arrivasplata_Reporte de similitud.pdf.txtExtracted texttext/plain3946http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/12/Cavero%20Arrivasplata_Reporte%20de%20similitud.pdf.txt6f0fccd3524963ac52f5a23b7f0a7546MD512metadata only accessTHUMBNAILCavero Arrivasplata_Tesis.pdf.jpgCavero Arrivasplata_Tesis.pdf.jpgGenerated Thumbnailimage/jpeg9038http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/16/Cavero%20Arrivasplata_Tesis.pdf.jpg26e12614958ad7f11ba008647f41c7daMD516open accessCavero Arrivasplata_Autorización.pdf.jpgCavero Arrivasplata_Autorización.pdf.jpgGenerated Thumbnailimage/jpeg7658http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/9/Cavero%20Arrivasplata_Autorizaci%c3%b3n.pdf.jpgc429dfdf08925592ec91c48608ff9080MD59metadata only accessCavero Arrivasplata_Acta de sustentación.pdf.jpgCavero Arrivasplata_Acta de sustentación.pdf.jpgGenerated Thumbnailimage/jpeg8722http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/11/Cavero%20Arrivasplata_Acta%20de%20sustentaci%c3%b3n.pdf.jpg88ccdb812e21a54a877c6d7e2f048a12MD511metadata only accessCavero Arrivasplata_Reporte de similitud.pdf.jpgCavero Arrivasplata_Reporte de similitud.pdf.jpgGenerated Thumbnailimage/jpeg8825http://repositorio.utec.edu.pe/bitstream/20.500.12815/365/13/Cavero%20Arrivasplata_Reporte%20de%20similitud.pdf.jpgc4c224268161480304eccd0494045f7fMD513metadata only access20.500.12815/365oai:repositorio.utec.edu.pe:20.500.12815/3652025-04-09 16:52:10.2open accessRepositorio Institucional UTECrepositorio@utec.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.93557
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).