Estudio comparativo de modelos de clasificación de Minería de datos para la predicción del rendimiento académico de los estudiantes de la Escuela Profesional de Ingeniería de Sistemas e Informática-UTEA
Descripción del Articulo
La presente investigación titulada “Estudio comparativo de modelos de clasificación de Minería de Datos para la predicción del rendimiento académico de los estudiantes de la Escuela Profesional de Ingeniería de Sistemas e Informática-UTEA”, tuvo como objetivo principal comparar los modelos de clasif...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad Tecnológica de los Andes |
Repositorio: | UTEA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.utea.edu.pe:20.500.14512/831 |
Enlace del recurso: | https://hdl.handle.net/20.500.14512/831 |
Nivel de acceso: | acceso abierto |
Materia: | Algoritmos de clasificación Eficiencia Rendimiento académico Árboles de Decisión K-Vecinos Más Cercanos https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | La presente investigación titulada “Estudio comparativo de modelos de clasificación de Minería de Datos para la predicción del rendimiento académico de los estudiantes de la Escuela Profesional de Ingeniería de Sistemas e Informática-UTEA”, tuvo como objetivo principal comparar los modelos de clasificación de minería de datos: Árboles de decisión y K-Vecinos Más Cercanos para predecir el rendimiento académico de los estudiantes en la Escuela Profesional de Ingeniería de Sistemas e Informática – UTEA. Con una metodología de investigación aplicada, de nivel descriptivo y diseño no experimental de corte transversal. La muestra consistió en 112 estudiantes inscritos en la asignatura de Minería de datos, seleccionados mediante el método no probabilístico e intencional. Se registraron los resultados del desempeño de cada modelo aplicando la técnica de la observación y la ficha de registro como instrumento de recolección de datos. Llegando a concluir una diferencia significativa entre los modelos de Árboles de decisión y K-Vecinos Más Cercano. Las métricas de exactitud, precisión y sensibilidad indicaron que el modelo de Árboles de Decisión superó en eficiencia en la predicción en comparación del modelo de K-Vecinos Más Cercanos. Este resultado fue respaldado por el estadístico T-Student para muestras independientes, donde el valor p calculado (0.049) resultó ser menor que el nivel de significancia establecido (0.05), lo que sugiere que el modelo de Árboles de Decisión es más eficiente para la predicción del rendimiento académico. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).