Revisión sistemática del uso de arquitecturas de Deep Learning en la detección de fraudes financieros

Descripción del Articulo

Este estudio ofrece un examen detallado de cómo varios modelos de IA contribuyen a detectar actividades financieras fraudulentas. Para lograr esto, se revisaron 30 estudios recientes publicados entre 2020 y 2025, reunidos de fuentes científicas como IEEE Xplore, ScienceDirect, SpringerLink y Scopus....

Descripción completa

Detalles Bibliográficos
Autor: Quiroz Carrasco, Daniel
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/15402
Enlace del recurso:https://hdl.handle.net/20.500.12802/15402
Nivel de acceso:acceso abierto
Materia:Deep Learning
Detección de fraude financiero
CNN
LSTM
GNN
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Este estudio ofrece un examen detallado de cómo varios modelos de IA contribuyen a detectar actividades financieras fraudulentas. Para lograr esto, se revisaron 30 estudios recientes publicados entre 2020 y 2025, reunidos de fuentes científicas como IEEE Xplore, ScienceDirect, SpringerLink y Scopus. CNN, LSTM, GNN y MLP figuran entre las arquitecturas más empleadas, destacando por su desempeño frente a patrones anómalos en entornos financieros. Las formas más comunes de evaluar estos modelos son a través de medidas como la precisión, el recall, la puntuación F1 y el AUC. A pesar de los resultados notables en varios estudios, problemas como la obtención de datos reales, los criterios de evaluación variables y la naturaleza costosa de algunos diseños persisten. Los resultados sugieren que el aprendizaje profundo podría ser un enfoque prometedor para desarrollar sistemas de prevención de fraude mejores y adaptables
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).