Exportación Completada — 

Identificación automática de repique en plántulas de capsicum annuum group mediante uso de algoritmos de clasificación de imágenes

Descripción del Articulo

Hoy en día el Perú es considerado como el país con mayor diversidad de ajíes en todo el mundo, produciendo anualmente 164 mil toneladas, de las cuales 61 mil toneladas son de Capsicum, entre ajíes y pimientos. Por ello es fundamental implementar tecnologías que permitan el cuidado y prevención de lo...

Descripción completa

Detalles Bibliográficos
Autor: Vega Tavara, Luis Enrique
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/9911
Enlace del recurso:https://hdl.handle.net/20.500.12802/9911
Nivel de acceso:acceso abierto
Materia:Plántulas
Capsicum annuum group
Identificación de repique
Algoritmos de clasificación
Naive bayes
Árbol de decisiones
Aprendizaje automático
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Hoy en día el Perú es considerado como el país con mayor diversidad de ajíes en todo el mundo, produciendo anualmente 164 mil toneladas, de las cuales 61 mil toneladas son de Capsicum, entre ajíes y pimientos. Por ello es fundamental implementar tecnologías que permitan el cuidado y prevención de los cultivos, ya que el principal motivo de la poca productividad en plántulas de Capsicum Annuum Group es el déficit en el control del proceso de repique, este proceso se caracteriza por controlar la cantidad de hojas de la plántula para realizar el transplante y poder garantizar el correcto crecimiento y desarrollo de la plántula hasta obtener sus frutos. Ante el problema suscitado se controló el proceso de repique mediante la detección del área y el perimetro, esto conllevo a poder detectar si la plántula se encontraba con la cantidad de hojas adecuadas para el proceso de repique; para iniciar con el control del repique se realizó un protocolo para la adquisición de las imágenes, lo cual permitió obtener 1200 imágenes de Capsicum Annuum Group, que sirvieron para realizar un preprocesamiento de las imágenes obtenidas, teniendo en consideración que para haber segmentado la imagen se tuvo que tener cuidado de no perder regiones de interes de la plántula, por ello se realizó una conversión a 8 bit – RGB, se extrajo el canal verde de la imagen, luego se realizó una umbralización de máxima entropía para obtener la separación del background y foreground de la imagen; al visualizar la imagen umbralizada se observó que existían regiones que contenían impurezas, por ello se realizó una binarización de las imágenes con una apertura de 10 iteración y una máscara de 2x2; se procedió a calcular el área y el perímetro de la región de interes, para luego utilizar los clasificadores Naive Bayes y Árbol de Decisiones que tuvieron como resultado 100% en Precisión, Exactitud y Recall. Se concluye que se logró la identificación del repique en plántulas de Capsicum Annuum Group con una precisión del 100%, dando un mejor índice solo por el tiempo respuesta y consumo de CPU el algoritmo de clasificación Árbol de Decisiones.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).