Exportación Completada — 

Clasificación de enfermedades en cultivos de arroz mediante Deep Learning: Una revisión sistemática

Descripción del Articulo

El presente trabajo aborda la importancia de la detección y clasificación de enfermedades en el arroz, uno de los cultivos más relevantes a nivel mundial. El objetivo radica en identificar las arquitecturas de aprendizaje profundo más utilizadas y con mejor desempeño para clasificar afecciones como...

Descripción completa

Detalles Bibliográficos
Autores: Gamonal Diaz, Jean Pierre, Romero Lizano, Deyvi Jhair
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/14635
Enlace del recurso:https://hdl.handle.net/20.500.12802/14635
Nivel de acceso:acceso abierto
Materia:Arroz
Enfermedades
Aprendizaje profundo
Clasificación
Agricultura de precisión
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:El presente trabajo aborda la importancia de la detección y clasificación de enfermedades en el arroz, uno de los cultivos más relevantes a nivel mundial. El objetivo radica en identificar las arquitecturas de aprendizaje profundo más utilizadas y con mejor desempeño para clasificar afecciones como el tizón bacteriano, la mancha marrón y el Tungro. El método consistió en la revisión de artículos científicos publicados en los últimos cinco años, aplicando criterios de inclusión y exclusión basados en la metodología PRISMA. Las investigaciones analizadas evidencian que las redes neuronales convolucionales (CNN), combinadas con transferencia de aprendizaje, logran altos niveles de precisión al superar el 90% en los casos. Sin embargo, la heterogeneidad de conjuntos de datos dificulta comparar resultados, pues varios autores emplean bases propias o fusionan imágenes de distintas fuentes. Pese a ello, se concluye que el uso de Deep Learning en la clasificación de enfermedades del arroz es prometedor para la agricultura de precisión al optimizar la detección temprana y las decisiones de manejo integral. Se sugiere un mayor esfuerzo colaborativo entre ingenieros y agrónomos para unificar criterios, crear repositorios de datos compartidos y perfeccionar los modelos, con el propósito de robustecer la confiabilidad de los modelos y favorecer su integración tecnológica ya que podría disminuir significativamente las pérdidas en cultivos, fortaleciendo la sostenibilidad y resiliencia alimentaria.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).