Detección de ataques distribuidos de denegación de servicios en servidores web utilizando algoritmos de Machine Learning
Descripción del Articulo
Los ataques DDoS, representan una amenaza significativa en el campo de la ciberseguridad, debido a su capacidad para interrumpir servicios legítimos y causar daños financieros y reputacionales. Estos ataques se efectúan al comprometer múltiples dispositivos que envían tráfico masivo para saturar los...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad Señor de Sipan |
Repositorio: | USS-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.uss.edu.pe:20.500.12802/13521 |
Enlace del recurso: | https://hdl.handle.net/20.500.12802/13521 |
Nivel de acceso: | acceso abierto |
Materia: | DDoS Servidores web Machine learning Mitigación https://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | Los ataques DDoS, representan una amenaza significativa en el campo de la ciberseguridad, debido a su capacidad para interrumpir servicios legítimos y causar daños financieros y reputacionales. Estos ataques se efectúan al comprometer múltiples dispositivos que envían tráfico masivo para saturar los sistemas. A pesar de los avances en las tecnologías de protección y en las técnicas de mitigación, estos ataques siguen evolucionando y presentan desafíos constantes para la seguridad. Las técnicas de machine learning, como XGBoost , AdaBoost y perceptrón multicapa, se emplean se utilizan para mitigar y detener estos ataques. El perceptrón multicapa ha mostrado una alta precisión, alcanzando el 91,2%, mientras que otros modelos también ofrecen buenos resultados, pero con algunas limitaciones. La implementación de filtros adaptativos y estrategias de defensa en capas ha sido efectiva para reducir el tráfico de ataque y limitar el daño colateral. Eventos recientes, como el ataque DDoS a CloudFlare en 2023, que superó los 71 millones de solicitudes por segundo, demuestran la creciente sofisticación de estos ataques. A pesar de las medidas adoptadas, incluyendo modelos matemáticos y técnicas de aprendizaje automático para detectar ataques con alta precisión, la amenaza sigue siendo un desafío. Para enfrentar y mitigar los ataques DDoS de manera efectiva, es crucial combinar técnicas avanzadas de aprendizaje automático con estrategias de defensa en capas. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).