Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles

Descripción del Articulo

Las industrias en el Perú están conformadas en su 99.05% por mipymes, de las cuales el 6.7% y 3.3% representan a industrias manufactureras de media y baja tecnología. Estas empresas realizan un proceso llamado patronaje, el cual resulta costoso en términos de recursos, mano de obra y tiempo trabajo,...

Descripción completa

Detalles Bibliográficos
Autor: Vallejos Rodríguez, Jair Adbeel
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Señor de Sipan
Repositorio:USS-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uss.edu.pe:20.500.12802/8382
Enlace del recurso:https://hdl.handle.net/20.500.12802/8382
Nivel de acceso:acceso abierto
Materia:Algoritmos
Detección de bordes
Vectorización
Detección de esquinas
Imagen vectorial
http://purl.org/pe-repo/ocde/ford#2.02.04
id USSS_819e8a81af197f8b7fbb23cd9c6023b8
oai_identifier_str oai:repositorio.uss.edu.pe:20.500.12802/8382
network_acronym_str USSS
network_name_str USS-Institucional
repository_id_str 4829
dc.title.es_PE.fl_str_mv Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles
title Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles
spellingShingle Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles
Vallejos Rodríguez, Jair Adbeel
Algoritmos
Detección de bordes
Vectorización
Detección de esquinas
Imagen vectorial
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles
title_full Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles
title_fullStr Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles
title_full_unstemmed Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles
title_sort Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textiles
author Vallejos Rodríguez, Jair Adbeel
author_facet Vallejos Rodríguez, Jair Adbeel
author_role author
dc.contributor.advisor.fl_str_mv Mejia Cabrera, Heber Ivan
dc.contributor.author.fl_str_mv Vallejos Rodríguez, Jair Adbeel
dc.subject.es_PE.fl_str_mv Algoritmos
Detección de bordes
Vectorización
Detección de esquinas
Imagen vectorial
topic Algoritmos
Detección de bordes
Vectorización
Detección de esquinas
Imagen vectorial
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description Las industrias en el Perú están conformadas en su 99.05% por mipymes, de las cuales el 6.7% y 3.3% representan a industrias manufactureras de media y baja tecnología. Estas empresas realizan un proceso llamado patronaje, el cual resulta costoso en términos de recursos, mano de obra y tiempo trabajo, pues se realiza mediante técnicas manuales. Esta investigación busca facilitar dicho proceso mediante la digitalización, para ello se planteó realizar moldes computarizados siguiendo un proceso que consta en la obtención de imágenes de patrones físicos mediante un protocolo de adquisición de imágenes, la detección de bordes y detección de esquinas para una futura vectorización. Existen diversas técnicas para realizar estas tareas, par ello se realizó una evaluación de las mismas para determinar que técnica se adecúa mejor a la problemática enfrentada. Se evaluó técnicas de detección de bordes como Canny-Deriche, Sobel y un método propuesto basado en la erosión de la imagen, tras la evaluación se dedujo que para este trabajo la técnica adecuada es Sobel, pues muestra calidad visual buena con un valor MSE de 1536 en tiempos de respuesta de 6.1 milisegundos, sobreponiéndose sobre Canny-Deriche y Erosión.. También se evaluó técnicas de detección de esquinas que ayudarán a identificar puntos vectorizables de una imagen, para ello se comparó las técnicas de Harris Corner, con una propuesta de dos técnicas, una evalúa las pendientes del borde de una imagen y otra técnica que recorre pixel a pixel del borde la una imagen. Tras evaluar su desempeño, se logró identificar que la técnica propuesta de recorrido Pixel a Pixel logra precisión de 90%, consumo de 0.9 MB de memoria en 0.57 milisegundos por proceso. Se concluyó que la técnica de recorrido pixel a pixel, es la mejor para reconocer esquinas pues presenta mayor precisión, consumo de memoria hasta 30 veces más bajo y tiempos de respuesta hasta 68 veces más rápido que el método tradicional de Harris.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-27T07:22:07Z
dc.date.available.none.fl_str_mv 2021-07-27T07:22:07Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12802/8382
url https://hdl.handle.net/20.500.12802/8382
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Perú
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Perú
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Señor de Sipán
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - USS
dc.source.none.fl_str_mv reponame:USS-Institucional
instname:Universidad Señor de Sipan
instacron:USS
instname_str Universidad Señor de Sipan
instacron_str USS
institution USS
reponame_str USS-Institucional
collection USS-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional USS
bitstream.url.fl_str_mv http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/4/Vallejos%20Rodr%c3%adguez%20Jair%20Adbeel.pdf.txt
http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/5/Vallejos%20Rodr%c3%adguez%20Jair%20Adbeel.pdf.jpg
http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/2/license_rdf
http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/3/license.txt
http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/1/Vallejos%20Rodr%c3%adguez%20Jair%20Adbeel.pdf
bitstream.checksum.fl_str_mv aed86dfb88ba3154afe76cedc60993f1
f22a0ccaf62642e72b4f9137ed417817
3655808e5dd46167956d6870b0f43800
8a4605be74aa9ea9d79846c1fba20a33
3049e5d775cb67ddd23fcb7e8c8accde
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Señor de Sipán
repository.mail.fl_str_mv repositorio@uss.edu.pe
_version_ 1772955069331800064
spelling Mejia Cabrera, Heber IvanVallejos Rodríguez, Jair Adbeel2021-07-27T07:22:07Z2021-07-27T07:22:07Z2021https://hdl.handle.net/20.500.12802/8382Las industrias en el Perú están conformadas en su 99.05% por mipymes, de las cuales el 6.7% y 3.3% representan a industrias manufactureras de media y baja tecnología. Estas empresas realizan un proceso llamado patronaje, el cual resulta costoso en términos de recursos, mano de obra y tiempo trabajo, pues se realiza mediante técnicas manuales. Esta investigación busca facilitar dicho proceso mediante la digitalización, para ello se planteó realizar moldes computarizados siguiendo un proceso que consta en la obtención de imágenes de patrones físicos mediante un protocolo de adquisición de imágenes, la detección de bordes y detección de esquinas para una futura vectorización. Existen diversas técnicas para realizar estas tareas, par ello se realizó una evaluación de las mismas para determinar que técnica se adecúa mejor a la problemática enfrentada. Se evaluó técnicas de detección de bordes como Canny-Deriche, Sobel y un método propuesto basado en la erosión de la imagen, tras la evaluación se dedujo que para este trabajo la técnica adecuada es Sobel, pues muestra calidad visual buena con un valor MSE de 1536 en tiempos de respuesta de 6.1 milisegundos, sobreponiéndose sobre Canny-Deriche y Erosión.. También se evaluó técnicas de detección de esquinas que ayudarán a identificar puntos vectorizables de una imagen, para ello se comparó las técnicas de Harris Corner, con una propuesta de dos técnicas, una evalúa las pendientes del borde de una imagen y otra técnica que recorre pixel a pixel del borde la una imagen. Tras evaluar su desempeño, se logró identificar que la técnica propuesta de recorrido Pixel a Pixel logra precisión de 90%, consumo de 0.9 MB de memoria en 0.57 milisegundos por proceso. Se concluyó que la técnica de recorrido pixel a pixel, es la mejor para reconocer esquinas pues presenta mayor precisión, consumo de memoria hasta 30 veces más bajo y tiempos de respuesta hasta 68 veces más rápido que el método tradicional de Harris.TesisInfraestructura, Tecnología y Medio Ambienteapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 2.5 Perúhttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSAlgoritmosDetección de bordesVectorizaciónDetección de esquinasImagen vectorialhttp://purl.org/pe-repo/ocde/ford#2.02.04Comparación de algoritmos de detección de bordes y vectorización de imágenes de moldes textilesinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas41639565https://orcid.org/0000-0002-0007-092875919526612076Ramos Moscol, Mario FernandoMejia Cabrera, Heber IvanBances Saavedra, David Enriquehttp://purl.org/pe-repo/renati/level#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisTEXTVallejos Rodríguez Jair Adbeel.pdf.txtVallejos Rodríguez Jair Adbeel.pdf.txtExtracted texttext/plain122840http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/4/Vallejos%20Rodr%c3%adguez%20Jair%20Adbeel.pdf.txtaed86dfb88ba3154afe76cedc60993f1MD54THUMBNAILVallejos Rodríguez Jair Adbeel.pdf.jpgVallejos Rodríguez Jair Adbeel.pdf.jpgGenerated Thumbnailimage/jpeg10009http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/5/Vallejos%20Rodr%c3%adguez%20Jair%20Adbeel.pdf.jpgf22a0ccaf62642e72b4f9137ed417817MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/2/license_rdf3655808e5dd46167956d6870b0f43800MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALVallejos Rodríguez Jair Adbeel.pdfVallejos Rodríguez Jair Adbeel.pdfapplication/pdf2785631http://repositorio.uss.edu.pe//bitstream/20.500.12802/8382/1/Vallejos%20Rodr%c3%adguez%20Jair%20Adbeel.pdf3049e5d775cb67ddd23fcb7e8c8accdeMD5120.500.12802/8382oai:repositorio.uss.edu.pe:20.500.12802/83822021-07-27 03:03:32.793Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754616
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).