RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES
Descripción del Articulo
.Este trabajo se enfoca en los algoritmos y técnicas empleadas para el reconocimiento de impurezas en aisladores eléctricos. Y se desarrolló con el objetivo de poder determinar a tiempo, cuando es que un aislador eléctrico necesita su respectivo mantenimiento preventivo; para impedir cortocircuitos,...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2018 |
Institución: | Universidad Señor de Sipan |
Repositorio: | USS-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.uss.edu.pe:20.500.12802/5480 |
Enlace del recurso: | https://hdl.handle.net/20.500.12802/5480 |
Nivel de acceso: | acceso abierto |
Materia: | Reconocimiento de imágenes Algoritmos Aisladores eléctricos Impurezas Mantenimiento preventivo http://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
USSS_5eda6bbf3ff594d4164c11245c2268f5 |
---|---|
oai_identifier_str |
oai:repositorio.uss.edu.pe:20.500.12802/5480 |
network_acronym_str |
USSS |
network_name_str |
USS-Institucional |
repository_id_str |
4829 |
dc.title.es_PE.fl_str_mv |
RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES |
title |
RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES |
spellingShingle |
RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES Villegas Vega, Myguel Angel Mohamet Reconocimiento de imágenes Algoritmos Aisladores eléctricos Impurezas Mantenimiento preventivo http://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES |
title_full |
RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES |
title_fullStr |
RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES |
title_full_unstemmed |
RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES |
title_sort |
RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALES |
author |
Villegas Vega, Myguel Angel Mohamet |
author_facet |
Villegas Vega, Myguel Angel Mohamet Chapoñan Santisteban, Yilmer Justiniano |
author_role |
author |
author2 |
Chapoñan Santisteban, Yilmer Justiniano |
author2_role |
author |
dc.contributor.advisor.fl_str_mv |
Mejia Cabrera, Heber Ivan |
dc.contributor.author.fl_str_mv |
Villegas Vega, Myguel Angel Mohamet Chapoñan Santisteban, Yilmer Justiniano |
dc.subject.es_PE.fl_str_mv |
Reconocimiento de imágenes Algoritmos Aisladores eléctricos Impurezas Mantenimiento preventivo |
topic |
Reconocimiento de imágenes Algoritmos Aisladores eléctricos Impurezas Mantenimiento preventivo http://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
.Este trabajo se enfoca en los algoritmos y técnicas empleadas para el reconocimiento de impurezas en aisladores eléctricos. Y se desarrolló con el objetivo de poder determinar a tiempo, cuando es que un aislador eléctrico necesita su respectivo mantenimiento preventivo; para impedir cortocircuitos, fugas a tierra y arcos eléctricos. La implementación se propuso en un laboratorio de investigación, limitándose a procesar 200 diferentes imágenes. Las técnicas usadas en la presente investigación fueron las de observación y entrevista a ingenieros eléctricos que nos explicó los principales problemas con respecto a estos aisladores eléctricos en media y alta tensión. Para poder realizar este trabajo se usaron diferentes algoritmos en cada una de las etapas del procesamiento de imágenes digitales: Pre – Procesamiento (Filtros de Mediana y Filtro Blur Normalizado), Segmentación (Otsu), Extracción de características (Gabor y LBP) y Clasificación (SVM, KNN, Red Neuronal Probabilística y clasificación semiautomático). Debido a que se usaron 2 algoritmos en el pre procesamiento, un algoritmo en la etapa de segmentación y 2 algoritmos en la etapa de Extracción, se obtuvieron 2 grupos (Gabor y LBP) para cada grupo de algoritmos de Pre Procesamiento. Después de que se clasificaron todas las imágenes en cada uno de los grupos, se obtuvo un porcentaje en cuanto a rendimiento de 100% con SVM y KNN en base a la clasificación semiautomático con los algoritmos (Filtro Mediana, Otsu, Gabor), seguido de un 80% con todos los algoritmos de clasificación con los algoritmos (Filtro Normalizado, Otsu, LBP). El mejor resultado con el algoritmo de redes neuronales fue de 80% con Filtro Normalizado, Otsu y LBP |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2019-02-25T19:24:40Z |
dc.date.available.none.fl_str_mv |
2019-02-25T19:24:40Z |
dc.date.issued.fl_str_mv |
2018 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12802/5480 |
url |
https://hdl.handle.net/20.500.12802/5480 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Señor de Sipán |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - USS |
dc.source.none.fl_str_mv |
reponame:USS-Institucional instname:Universidad Señor de Sipan instacron:USS |
instname_str |
Universidad Señor de Sipan |
instacron_str |
USS |
institution |
USS |
reponame_str |
USS-Institucional |
collection |
USS-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional USS |
bitstream.url.fl_str_mv |
http://repositorio.uss.edu.pe//bitstream/20.500.12802/5480/3/Villegas%20Vega%20%26%20Chapo%c3%b1an%20Santisteban.pdf.txt http://repositorio.uss.edu.pe//bitstream/20.500.12802/5480/4/Villegas%20Vega%20%26%20Chapo%c3%b1an%20Santisteban.pdf.jpg http://repositorio.uss.edu.pe//bitstream/20.500.12802/5480/1/Villegas%20Vega%20%26%20Chapo%c3%b1an%20Santisteban.pdf http://repositorio.uss.edu.pe//bitstream/20.500.12802/5480/2/license.txt |
bitstream.checksum.fl_str_mv |
086d65671e5835bc90f228b288107698 ced48dce55ee7b54aaf27a47407ce803 1c6b6e6f743d7e847366c44462ea6172 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Señor de Sipán |
repository.mail.fl_str_mv |
repositorio@uss.edu.pe |
_version_ |
1772955163352367104 |
spelling |
Mejia Cabrera, Heber IvanVillegas Vega, Myguel Angel MohametChapoñan Santisteban, Yilmer Justiniano2019-02-25T19:24:40Z2019-02-25T19:24:40Z2018https://hdl.handle.net/20.500.12802/5480.Este trabajo se enfoca en los algoritmos y técnicas empleadas para el reconocimiento de impurezas en aisladores eléctricos. Y se desarrolló con el objetivo de poder determinar a tiempo, cuando es que un aislador eléctrico necesita su respectivo mantenimiento preventivo; para impedir cortocircuitos, fugas a tierra y arcos eléctricos. La implementación se propuso en un laboratorio de investigación, limitándose a procesar 200 diferentes imágenes. Las técnicas usadas en la presente investigación fueron las de observación y entrevista a ingenieros eléctricos que nos explicó los principales problemas con respecto a estos aisladores eléctricos en media y alta tensión. Para poder realizar este trabajo se usaron diferentes algoritmos en cada una de las etapas del procesamiento de imágenes digitales: Pre – Procesamiento (Filtros de Mediana y Filtro Blur Normalizado), Segmentación (Otsu), Extracción de características (Gabor y LBP) y Clasificación (SVM, KNN, Red Neuronal Probabilística y clasificación semiautomático). Debido a que se usaron 2 algoritmos en el pre procesamiento, un algoritmo en la etapa de segmentación y 2 algoritmos en la etapa de Extracción, se obtuvieron 2 grupos (Gabor y LBP) para cada grupo de algoritmos de Pre Procesamiento. Después de que se clasificaron todas las imágenes en cada uno de los grupos, se obtuvo un porcentaje en cuanto a rendimiento de 100% con SVM y KNN en base a la clasificación semiautomático con los algoritmos (Filtro Mediana, Otsu, Gabor), seguido de un 80% con todos los algoritmos de clasificación con los algoritmos (Filtro Normalizado, Otsu, LBP). El mejor resultado con el algoritmo de redes neuronales fue de 80% con Filtro Normalizado, Otsu y LBPTesisapplication/pdfspaUniversidad Señor de SipánPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - USSRepositorio Institucional USSreponame:USS-Institucionalinstname:Universidad Señor de Sipaninstacron:USSReconocimiento de imágenesAlgoritmosAisladores eléctricosImpurezasMantenimiento preventivohttp://purl.org/pe-repo/ocde/ford#2.02.04RECONOCIMIENTO DE IMPUREZAS DE AISLADORES ELÉCTRICOS EN IMÁGENES DIGITALESinfo:eu-repo/semantics/bachelorThesisSUNEDUTítulo profesionalUniversidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y UrbanismoIngeniero de SistemasIngeniería de Sistemas612076http://purl.org/pe-repo/renati/level#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisTEXTVillegas Vega & Chapoñan Santisteban.pdf.txtVillegas Vega & Chapoñan Santisteban.pdf.txtExtracted texttext/plain193826http://repositorio.uss.edu.pe//bitstream/20.500.12802/5480/3/Villegas%20Vega%20%26%20Chapo%c3%b1an%20Santisteban.pdf.txt086d65671e5835bc90f228b288107698MD53THUMBNAILVillegas Vega & Chapoñan Santisteban.pdf.jpgVillegas Vega & Chapoñan Santisteban.pdf.jpgGenerated Thumbnailimage/jpeg9756http://repositorio.uss.edu.pe//bitstream/20.500.12802/5480/4/Villegas%20Vega%20%26%20Chapo%c3%b1an%20Santisteban.pdf.jpgced48dce55ee7b54aaf27a47407ce803MD54ORIGINALVillegas Vega & Chapoñan Santisteban.pdfVillegas Vega & Chapoñan Santisteban.pdfapplication/pdf4483921http://repositorio.uss.edu.pe//bitstream/20.500.12802/5480/1/Villegas%20Vega%20%26%20Chapo%c3%b1an%20Santisteban.pdf1c6b6e6f743d7e847366c44462ea6172MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.uss.edu.pe//bitstream/20.500.12802/5480/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12802/5480oai:repositorio.uss.edu.pe:20.500.12802/54802021-04-23 02:18:33.024Repositorio Institucional de la Universidad Señor de Sipánrepositorio@uss.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.772021 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).