Reconocimiento automático de placas de rodaje utilizando una red neuronal convolucional para el ingreso de vehículos en la Universidad Ricardo Palma
Descripción del Articulo
Las redes neuronales convolucionales (CNN) han tenido una gran evolución en su aplicación para la detección de imágenes, lo cual ha ayudado en la resolución de problemas que anteriormente se volvían complejos, aplicándose mayormente en sistemas de reconocimiento facial y de reconocimiento de placas...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2020 |
Institución: | Universidad Ricardo Palma |
Repositorio: | URP-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.urp.edu.pe:20.500.14138/3646 |
Enlace del recurso: | https://hdl.handle.net/20.500.14138/3646 |
Nivel de acceso: | acceso abierto |
Materia: | Red neuronal convolucional Matlab Toolbox Deep Learning App Designer SQLite https://purl.org/pe-repo/ocde/ford#2.02.00 |
Sumario: | Las redes neuronales convolucionales (CNN) han tenido una gran evolución en su aplicación para la detección de imágenes, lo cual ha ayudado en la resolución de problemas que anteriormente se volvían complejos, aplicándose mayormente en sistemas de reconocimiento facial y de reconocimiento de placas vehiculares en bancos y centros comerciales que cuentan con un control de aforo vehicular. Por ello, se simuló el reconocimiento automático de placas de rodaje utilizando una CNN para el ingreso de vehículos en la Universidad Ricardo Palma. En primer lugar, se realizó la toma de fotografías de placas vehiculares para el entrenamiento de tres modelos de red, estos modelos fueron entrenados y evaluados con tres, cinco y ocho capas intermedias respectivamente, a través del Toolbox Deep Learning del Matlab, con seiscientas imágenes de placas vehiculares, pertenecientes a veinte vehículos, donde cuatrocientas cuarenta imágenes fueron para el entrenamiento interno de las CNNs y ciento sesenta para la validación de las mismas. A continuación, se corroboró la efectividad de las redes, obteniendo respectivamente en el primer, segundo y tercer modelo un porcentaje de efectividad del 40%, 75% y 95%. Con ese resultado, se eligió el tercer modelo de CNN para el reconocimiento de las placas vehiculares. Seguidamente, se procedió con la creación de la interfaz del proyecto a través del gadget App Designer y la creación de la base de datos con el software SQLite. Finalmente, se validó el funcionamiento del tercer modelo de red neuronal convolucional, logrando el correcto reconocimiento de las placas vehiculares. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).