Exportación Completada — 

Reconocimiento automático de placas de rodaje utilizando una red neuronal convolucional para el ingreso de vehículos en la Universidad Ricardo Palma

Descripción del Articulo

Las redes neuronales convolucionales (CNN) han tenido una gran evolución en su aplicación para la detección de imágenes, lo cual ha ayudado en la resolución de problemas que anteriormente se volvían complejos, aplicándose mayormente en sistemas de reconocimiento facial y de reconocimiento de placas...

Descripción completa

Detalles Bibliográficos
Autores: Ramirez Mejía, Brayan De Jesús, Tito Apaza, Mack Rolly
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Ricardo Palma
Repositorio:URP-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.urp.edu.pe:20.500.14138/3646
Enlace del recurso:https://hdl.handle.net/20.500.14138/3646
Nivel de acceso:acceso abierto
Materia:Red neuronal convolucional
Matlab
Toolbox Deep Learning
App Designer
SQLite
https://purl.org/pe-repo/ocde/ford#2.02.00
Descripción
Sumario:Las redes neuronales convolucionales (CNN) han tenido una gran evolución en su aplicación para la detección de imágenes, lo cual ha ayudado en la resolución de problemas que anteriormente se volvían complejos, aplicándose mayormente en sistemas de reconocimiento facial y de reconocimiento de placas vehiculares en bancos y centros comerciales que cuentan con un control de aforo vehicular. Por ello, se simuló el reconocimiento automático de placas de rodaje utilizando una CNN para el ingreso de vehículos en la Universidad Ricardo Palma. En primer lugar, se realizó la toma de fotografías de placas vehiculares para el entrenamiento de tres modelos de red, estos modelos fueron entrenados y evaluados con tres, cinco y ocho capas intermedias respectivamente, a través del Toolbox Deep Learning del Matlab, con seiscientas imágenes de placas vehiculares, pertenecientes a veinte vehículos, donde cuatrocientas cuarenta imágenes fueron para el entrenamiento interno de las CNNs y ciento sesenta para la validación de las mismas. A continuación, se corroboró la efectividad de las redes, obteniendo respectivamente en el primer, segundo y tercer modelo un porcentaje de efectividad del 40%, 75% y 95%. Con ese resultado, se eligió el tercer modelo de CNN para el reconocimiento de las placas vehiculares. Seguidamente, se procedió con la creación de la interfaz del proyecto a través del gadget App Designer y la creación de la base de datos con el software SQLite. Finalmente, se validó el funcionamiento del tercer modelo de red neuronal convolucional, logrando el correcto reconocimiento de las placas vehiculares.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).