Principal Component Analysis (PCA) para mejorar la performance de aprendizaje de los algoritmos Support Vector Machine (SVM) y Red Neuronal Multicapa (MLNN)
Descripción del Articulo
Esta tesis explora el problema de data sets con un número alto de atributos; y el impacto que generan en la performance de aprendizaje de los algoritmos Support Vector Machine (SVM) y Redes Neuronales Multicapa (MLNN). Para poder resolver este problema, proponemos la siguiente hipótesis: ““La aplica...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad Privada Antenor Orrego |
| Repositorio: | UPAO-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.upao.edu.pe:20.500.12759/3398 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12759/3398 |
| Nivel de acceso: | acceso abierto |
| Materia: | Component Analysis Performance https://purl.org/pe-repo/ocde/ford#2.02.04 |
| Sumario: | Esta tesis explora el problema de data sets con un número alto de atributos; y el impacto que generan en la performance de aprendizaje de los algoritmos Support Vector Machine (SVM) y Redes Neuronales Multicapa (MLNN). Para poder resolver este problema, proponemos la siguiente hipótesis: ““La aplicación de Principal Component Analysis (PCA) sobre el data set; mejorará la performance de aprendizaje de los algoritmos Support Vector Machine (SVM) y Redes neuronales Multicapa (MLNN). De acuerdo con nuestra hipótesis; tenemos el siguiente objetivo general: ““Mejorar la performance de aprendizaje de los algoritmos Support Vector Machine (SVM) y Redes Neuronales Multicapa (MLNN) a través de la aplicación de Principal Component Analysis (PCA) sobre el data set““. Para poder implementar los algoritmos (SVM, MLNN y PCA); usamos el data set QSAR biodegradation, de obtenido del repositorio gratuito Machine Learning (UCI), asimismo, todo la implementación de los algoritmos fue realizada usando Matlab 2014a. Una vez que los algoritmos fueron implementados, empezamos la prueba de la hipótesis; para ello creamos dos dataset, uno aplicando PCA y el otro sin aplicarle PCA; luego medimos la performance de aprendizaje de los algoritmos SVM y MLNN contra sus contrapartes sin PCA; al final, los resultados mostraron que ambos algoritmos SVM y MLNN ganaron una mejora significativa en sus performances de aprendizaje en contraste con simplemente entrenar los algoritmos sin aplicar PCA al data set. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).