Deep neural network approaches for spanish sentiment analysis of short texts

Descripción del Articulo

El análisis de sentimientos se ha investigado ampliamente en los últimos años. Si bien se han obtenido importantes resultados teóricos y prácticos, todavía hay margen de mejora. En particular, cuando se considera oraciones cortas y lenguas de bajos recursos. Por lo tanto, en este trabajo nos centram...

Descripción completa

Detalles Bibliográficos
Autor: Ari Mamani, Disraeli Fausto
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad Nacional de San Agustín
Repositorio:UNSA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsa.edu.pe:UNSA/10201
Enlace del recurso:http://repositorio.unsa.edu.pe/handle/UNSA/10201
Nivel de acceso:acceso abierto
Materia:Redes neuronales profundas
Análisis de sentimientos
Oraciones de Twitter
https://purl.org/pe-repo/ocde/ford#2.11.02
id UNSA_d9fe493dbc867b76014fd9f89d76dea7
oai_identifier_str oai:repositorio.unsa.edu.pe:UNSA/10201
network_acronym_str UNSA
network_name_str UNSA-Institucional
repository_id_str 4847
dc.title.es_PE.fl_str_mv Deep neural network approaches for spanish sentiment analysis of short texts
title Deep neural network approaches for spanish sentiment analysis of short texts
spellingShingle Deep neural network approaches for spanish sentiment analysis of short texts
Ari Mamani, Disraeli Fausto
Redes neuronales profundas
Análisis de sentimientos
Oraciones de Twitter
https://purl.org/pe-repo/ocde/ford#2.11.02
title_short Deep neural network approaches for spanish sentiment analysis of short texts
title_full Deep neural network approaches for spanish sentiment analysis of short texts
title_fullStr Deep neural network approaches for spanish sentiment analysis of short texts
title_full_unstemmed Deep neural network approaches for spanish sentiment analysis of short texts
title_sort Deep neural network approaches for spanish sentiment analysis of short texts
author Ari Mamani, Disraeli Fausto
author_facet Ari Mamani, Disraeli Fausto
author_role author
dc.contributor.advisor.fl_str_mv Ochoa Luna, José Eduardo
dc.contributor.author.fl_str_mv Ari Mamani, Disraeli Fausto
dc.subject.es_PE.fl_str_mv Redes neuronales profundas
Análisis de sentimientos
Oraciones de Twitter
topic Redes neuronales profundas
Análisis de sentimientos
Oraciones de Twitter
https://purl.org/pe-repo/ocde/ford#2.11.02
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.02
description El análisis de sentimientos se ha investigado ampliamente en los últimos años. Si bien se han obtenido importantes resultados teóricos y prácticos, todavía hay margen de mejora. En particular, cuando se considera oraciones cortas y lenguas de bajos recursos. Por lo tanto, en este trabajo nos centramos en el análisis de sentimientos para los mensajes de Twitter en español. Exploramos la combinación de varias representaciones de palabras (Word2Vec, Glove, Fas-text) y modelos de redes neuronales profundas para clasificar textos cortos. Los enfoques anteriores de Deep Learning no pudieron obtener resultados óptimos para la clasificación de frases en español en Twitter. Por el contrario, mostramos resultados prometedores en esa dirección. Nuestra mejor configuración combina aumento de datos, representaciones de inserción de tres palabras, redes neuronales convolucionales y redes neuronales recurrentes. Esta configuración nos permite obtener resultados de vanguardia en el conjunto de datos de referencia español TASS/SEPLN, en términos de precisión.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-12-26T16:00:53Z
dc.date.available.none.fl_str_mv 2019-12-26T16:00:53Z
dc.date.issued.fl_str_mv 2019
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.unsa.edu.pe/handle/UNSA/10201
url http://repositorio.unsa.edu.pe/handle/UNSA/10201
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional de San Agustín de Arequipa
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Nacional de San Agustín de Arequipa
Repositorio Institucional - UNSA
dc.source.none.fl_str_mv reponame:UNSA-Institucional
instname:Universidad Nacional de San Agustín
instacron:UNSA
instname_str Universidad Nacional de San Agustín
instacron_str UNSA
institution UNSA
reponame_str UNSA-Institucional
collection UNSA-Institucional
bitstream.url.fl_str_mv https://repositorio.unsa.edu.pe/bitstreams/e1b646c8-4e4b-4f2c-b00d-3cf5f4ad28b7/download
https://repositorio.unsa.edu.pe/bitstreams/0d820bdb-f9fc-42de-a830-88dc03b8da23/download
https://repositorio.unsa.edu.pe/bitstreams/95a7d354-0bff-4393-993f-574c615d666e/download
bitstream.checksum.fl_str_mv c0303f51be1a17182325fbe4c3b3eda2
a1e1f1198795218f91e02d50c48c1d51
c52066b9c50a8f86be96c82978636682
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UNSA
repository.mail.fl_str_mv vridi.gestioninformacion@unsa.edu.pe
_version_ 1828763083921686528
spelling Ochoa Luna, José EduardoAri Mamani, Disraeli Fausto2019-12-26T16:00:53Z2019-12-26T16:00:53Z2019El análisis de sentimientos se ha investigado ampliamente en los últimos años. Si bien se han obtenido importantes resultados teóricos y prácticos, todavía hay margen de mejora. En particular, cuando se considera oraciones cortas y lenguas de bajos recursos. Por lo tanto, en este trabajo nos centramos en el análisis de sentimientos para los mensajes de Twitter en español. Exploramos la combinación de varias representaciones de palabras (Word2Vec, Glove, Fas-text) y modelos de redes neuronales profundas para clasificar textos cortos. Los enfoques anteriores de Deep Learning no pudieron obtener resultados óptimos para la clasificación de frases en español en Twitter. Por el contrario, mostramos resultados prometedores en esa dirección. Nuestra mejor configuración combina aumento de datos, representaciones de inserción de tres palabras, redes neuronales convolucionales y redes neuronales recurrentes. Esta configuración nos permite obtener resultados de vanguardia en el conjunto de datos de referencia español TASS/SEPLN, en términos de precisión.Tesisapplication/pdfhttp://repositorio.unsa.edu.pe/handle/UNSA/10201spaUniversidad Nacional de San Agustín de ArequipaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de San Agustín de ArequipaRepositorio Institucional - UNSAreponame:UNSA-Institucionalinstname:Universidad Nacional de San Agustíninstacron:UNSARedes neuronales profundasAnálisis de sentimientosOraciones de Twitterhttps://purl.org/pe-repo/ocde/ford#2.11.02Deep neural network approaches for spanish sentiment analysis of short textsinfo:eu-repo/semantics/bachelorThesisSUNEDU612076http://purl.org/pe-repo/renati/level#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisIngeniería de SistemasUniversidad Nacional de San Agustín de Arequipa.Facultad de Ingeniería de Producción y ServiciosTítulo ProfesionalIngeniero de SistemasTesis Formato ArtículoTEXTISarmadf.pdf.txtISarmadf.pdf.txtExtracted texttext/plain49290https://repositorio.unsa.edu.pe/bitstreams/e1b646c8-4e4b-4f2c-b00d-3cf5f4ad28b7/downloadc0303f51be1a17182325fbe4c3b3eda2MD53ORIGINALISarmadf.pdfISarmadf.pdfapplication/pdf1072058https://repositorio.unsa.edu.pe/bitstreams/0d820bdb-f9fc-42de-a830-88dc03b8da23/downloada1e1f1198795218f91e02d50c48c1d51MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unsa.edu.pe/bitstreams/95a7d354-0bff-4393-993f-574c615d666e/downloadc52066b9c50a8f86be96c82978636682MD52UNSA/10201oai:repositorio.unsa.edu.pe:UNSA/102012024-11-24 12:00:09.882http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttps://repositorio.unsa.edu.peRepositorio Institucional UNSAvridi.gestioninformacion@unsa.edu.pe77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg==
score 13.872504
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).