Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)

Descripción del Articulo

En la educación moderna es muy importante diferenciar el estilo de aprendizaje para tratar de mejorar la enseñanza y en consecuencia el aprendizaje, al presentar información adecuada al estilo de aprendizaje de los estudiantes. Por esta razón este trabajo propone utilizar una red DENSENET como siste...

Descripción completa

Detalles Bibliográficos
Autor: Torres Aguilar, Ney
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Universidad Nacional de San Agustín
Repositorio:UNSA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsa.edu.pe:20.500.12773/13483
Enlace del recurso:http://hdl.handle.net/20.500.12773/13483
Nivel de acceso:acceso abierto
Materia:Deep Learnibg
DenseNet
Sistema Recomendador
https://purl.org/pe-repo/ocde/ford#2.11.02
id UNSA_3d95a490d22fda65d7c79e64cba26f74
oai_identifier_str oai:repositorio.unsa.edu.pe:20.500.12773/13483
network_acronym_str UNSA
network_name_str UNSA-Institucional
repository_id_str 4847
dc.title.es_PE.fl_str_mv Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)
title Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)
spellingShingle Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)
Torres Aguilar, Ney
Deep Learnibg
DenseNet
Sistema Recomendador
https://purl.org/pe-repo/ocde/ford#2.11.02
title_short Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)
title_full Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)
title_fullStr Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)
title_full_unstemmed Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)
title_sort Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)
author Torres Aguilar, Ney
author_facet Torres Aguilar, Ney
author_role author
dc.contributor.advisor.fl_str_mv Gutiérrez Cáceres, Juan Carlos
dc.contributor.author.fl_str_mv Torres Aguilar, Ney
dc.subject.es_PE.fl_str_mv Deep Learnibg
DenseNet
Sistema Recomendador
topic Deep Learnibg
DenseNet
Sistema Recomendador
https://purl.org/pe-repo/ocde/ford#2.11.02
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.02
description En la educación moderna es muy importante diferenciar el estilo de aprendizaje para tratar de mejorar la enseñanza y en consecuencia el aprendizaje, al presentar información adecuada al estilo de aprendizaje de los estudiantes. Por esta razón este trabajo propone utilizar una red DENSENET como sistema de recomendación de estilo de aprendizaje, se entrena un modelo con un conjunto de datos de 500 imágenes de dibujos de paisajes. El sistema es capaz de predecir estilos de aprendizaje. Esta propuesta, alcanzó una precisión del 87,77% que es buena para orientar a los estudiantes de secundaria en el proceso de aprendizaje.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-23T14:03:02Z
dc.date.available.none.fl_str_mv 2021-12-23T14:03:02Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12773/13483
url http://hdl.handle.net/20.500.12773/13483
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional de San Agustín de Arequipa
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Nacional de San Agustín de Arequipa
Repositorio Institucional - UNSA
dc.source.none.fl_str_mv reponame:UNSA-Institucional
instname:Universidad Nacional de San Agustín
instacron:UNSA
instname_str Universidad Nacional de San Agustín
instacron_str UNSA
institution UNSA
reponame_str UNSA-Institucional
collection UNSA-Institucional
bitstream.url.fl_str_mv https://repositorio.unsa.edu.pe/bitstreams/ca69c3a7-0e83-4291-ad2b-e8e0480feb7c/download
https://repositorio.unsa.edu.pe/bitstreams/3da7ad7d-0ced-463f-871b-e2385631b502/download
https://repositorio.unsa.edu.pe/bitstreams/368fb09f-3da1-4103-81a8-414d9f39d53a/download
bitstream.checksum.fl_str_mv 372247c8d62acca565d0c92b8b3449c4
c52066b9c50a8f86be96c82978636682
7b7bcb56e0a2246c7e7b14ef6198bcce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UNSA
repository.mail.fl_str_mv repositorio@unsa.edu.pe
_version_ 1828763163681619968
spelling Gutiérrez Cáceres, Juan CarlosTorres Aguilar, Ney2021-12-23T14:03:02Z2021-12-23T14:03:02Z2021En la educación moderna es muy importante diferenciar el estilo de aprendizaje para tratar de mejorar la enseñanza y en consecuencia el aprendizaje, al presentar información adecuada al estilo de aprendizaje de los estudiantes. Por esta razón este trabajo propone utilizar una red DENSENET como sistema de recomendación de estilo de aprendizaje, se entrena un modelo con un conjunto de datos de 500 imágenes de dibujos de paisajes. El sistema es capaz de predecir estilos de aprendizaje. Esta propuesta, alcanzó una precisión del 87,77% que es buena para orientar a los estudiantes de secundaria en el proceso de aprendizaje.application/pdfhttp://hdl.handle.net/20.500.12773/13483spaUniversidad Nacional de San Agustín de ArequipaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de San Agustín de ArequipaRepositorio Institucional - UNSAreponame:UNSA-Institucionalinstname:Universidad Nacional de San Agustíninstacron:UNSADeep LearnibgDenseNetSistema Recomendadorhttps://purl.org/pe-repo/ocde/ford#2.11.02Sistema recomendador de objetos de aprendizaje, basado en la metodología de deep learning, para el reconocimiento de estilos de aprendizaje que mejoren el desempeño de los estudiantes en la educación básica regular (EBR 2017)info:eu-repo/semantics/masterThesisSUNEDU30677357https://orcid.org/0000-0001-6379-869540631762611107Herrera Quispe, José AlfredoIquira Becerra, Diego AlonsoGutiérrez Cáceres, Juan Carloshttp://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesisMaestría en Ciencias: Informática, con mención en Tecnologías de la Información y Comunicación en Gestión y EducaciónUniversidad Nacional de San Agustín de Arequipa.Unidad de Posgrado.Facultad de Ingeniería de Producción y ServiciosMaestro en Ciencias: Informática, con mención en Tecnologías de la Información y Comunicación en Gestión y EducaciónORIGINALUPtoagn.pdfUPtoagn.pdfapplication/pdf4652538https://repositorio.unsa.edu.pe/bitstreams/ca69c3a7-0e83-4291-ad2b-e8e0480feb7c/download372247c8d62acca565d0c92b8b3449c4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unsa.edu.pe/bitstreams/3da7ad7d-0ced-463f-871b-e2385631b502/downloadc52066b9c50a8f86be96c82978636682MD52TEXTUPtoagn.pdf.txtUPtoagn.pdf.txtExtracted texttext/plain156856https://repositorio.unsa.edu.pe/bitstreams/368fb09f-3da1-4103-81a8-414d9f39d53a/download7b7bcb56e0a2246c7e7b14ef6198bcceMD5320.500.12773/13483oai:repositorio.unsa.edu.pe:20.500.12773/134832021-12-24 03:01:49.264http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttps://repositorio.unsa.edu.peRepositorio Institucional UNSArepositorio@unsa.edu.pe77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg==
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).