Implementación de algoritmo de redes neuronales convolucionales para la identificación anticipada de armas de fuego

Descripción del Articulo

Esta investigación tiene como objetivo principal desarrollar e implementar un algoritmo basado en redes neuronales convolucionales (CNN como sus siglas en ingles Convolutional Neural Networks) en cámaras de vigilancia para la identificación anticipada de armas de fuego en entornos urbanos. Se propon...

Descripción completa

Detalles Bibliográficos
Autor: Holguín Mori, Jeremy Karsen
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/26277
Enlace del recurso:https://hdl.handle.net/20.500.12672/26277
Nivel de acceso:acceso abierto
Materia:Inteligencia artificial
Redes neuronales (Computación)"
Seguridad
Python (Lenguaje de programación de computadoras)
https://purl.org/pe-repo/ocde/ford#1.02.01
https://purl.org/pe-repo/ocde/ford#1.02.02
Descripción
Sumario:Esta investigación tiene como objetivo principal desarrollar e implementar un algoritmo basado en redes neuronales convolucionales (CNN como sus siglas en ingles Convolutional Neural Networks) en cámaras de vigilancia para la identificación anticipada de armas de fuego en entornos urbanos. Se propone un método de detección basado en inteligencia artificial que permite reconocer armas exhibidas en situaciones criminales, captadas por cámaras de video en tiempo real. La implementación de este sistema facilitará la gestión de proyectos de seguridad en empresas y entidades que requieran soluciones basadas en visión computacional. Para su desarrollo, se diseñó un algoritmo de entrenamiento en Python, empleando librerías de acceso abierto especializadas en visión computacional e inteligencia artificial. El sistema permite el reconocimiento automático de imágenes captadas por cámaras convencionales, extrayendo y analizando características relevantes para la identificación precisa de armas. Como resultado, se logró desarrollar un algoritmo accesible y eficiente, capaz de generar alertas automáticas ante la detección de una posible amenaza, contribuyendo a la reducción de la criminalidad en Lima. La validación del modelo demostró su eficacia en la detección temprana de armas, consolidando su potencial como herramienta innovadora en la prevención del delito.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).